
1

11 Inheritance, Polymorphism,
Interfaces

2

Objectives

At the end of the lesson, the student should be able to:

● Define super classes and subclasses
● Override methods of super classes
● Create final methods and final classes

3

Inheritance

harshit
Inserted Text
상속 재산

4

Object Class
● In Java, all classes, including the classes that make

up the Java API, are subclassed (extended) from
the Object super class.

● A sample class hierarchy is shown below.

5

Super class & Sub class
● Super class (Parent class)

– Any class above a specific class in the class hierarchy.
● Sub class (Child class)

– Any class below a specific class in the class hierarchy.

6

Reusability
● Benefits of Inheritance in OOP : Reusability

– Once a behavior (method) is defined in a super class,
that behavior is automatically inherited by all subclasses

– Thus, you can encode a method only once and they can
be used by all subclasses.

– Once a set of properties (fields) are defined in a super
class, the same set of properties are inherited by all
subclasses

– A subclass only needs to implement the differences
between itself and the parent.

7

Inheritance:
How to derive a sub class

8

extends keyword
● To derive a child class, we use the extends keyword.
● Suppose we have a parent class called Person.

public class Person {
protected String name;
protected String address;

/**
 * Default constructor
 */
public Person(){

System.out.println(“Inside Person:Constructor”);
name = ""; address = "";

}
. . . .

}

9

extends keyword

● Now, we want to create another class named Student
● Since a student is also a person, we decide to just

extend the class Person, so that we can inherit all the
properties and methods of the existing class Person.

● To do this, we write,

public class Student extends Person {
 public Student(){

System.out.println(“Inside Student:Constructor”);
}
. . . .

}

10

Inheritance:
Constructor Calling Chain

11

How Constructor method of a Super
class gets called

● When a Student object, a subclass (child class), is
instantiated, the default constructor of its super
class (parent class), Person class, is invoked
implicitly to do the necessary initializations.

● After that, subclass's constructor method is then
invoked

harshit
Highlight

12

Example: Constructor Calling Chain

● To illustrate this, consider the following code,

● In the code, we create an object of class Student.
The output of the program is,

public static void main(String[] args){
Student anna = new Student();

}

Inside Person:Constructor
Inside Student:Constructor

13

Example: Constructor Calling Chain

● The program flow is shown below.

14

Inheritance:
“super” Keyword

15

The “super” keyword

● A subclass can also explicitly call a constructor of
its immediate super class.

● This is done by using the super constructor call.

● A super constructor call in the constructor of a
subclass will result in the execution of relevant
constructor from the super class, based on the
arguments passed.

16

The “super” keyword

● For example, given our previous example classes
Person and Student, we show an example of a
super constructor call.

● Given the following code for Student,

public Student(){
super("SomeName", "SomeAddress");

 System.out.println("Inside Student:Constructor");
}

17

The “super” keyword

● Few things to remember when using the super
constructor call:
– The super() call MUST OCCUR AS THE FIRST

STATEMENT IN A CONSTRUCTOR.
– The super() call can only be used in a constructor

definition.

18

The “super” keyword

● Another use of super is to refer to members of the
super class (just like the this reference).

● For example,

public Student() {
super.name = “somename”;
super.address = “some address”;

}

19

Inheritance:
Overriding methods

20

Overriding methods

● If for some reason a derived class needs to have a
different implementation of a certain method from
that of the super class, overriding methods could
prove to be very useful.

● A subclass can override a method defined in its
super class by providing a new implementation for
that method.

21

Example: Overriding Methods

● Suppose we have the following implementation for
the getName method in the Person super class,
public class Person {

:
:
public String getName(){

System.out.println("Parent: getName");
return name;

}
}

22

Example: Overriding Methods
● To override the getName method of the super class

Person in the subclass Student, reimplement the
method

● Now, when we invoke the getName method of an
object of the subclass Student, the overridden getName
method would be called, and the output would be,

public class Student extends Person{
:
public String getName(){

System.out.println("Student: getName");
return name;

}
:

}

Student: getName

23

Inheritance:
Type casting

24

Type Casting between Objects

● An object instance of a subclass can be assigned
to a variable (reference) of a parent class through
implicit type casting

● Example
– Let's assume Student class is a child class of Person

class
– Let's assume TuftsStudent class is a child class of

Student class
TuftsStudent tuftstudent = new TuftsStudent();
Student student = tuftsstudent; // Implicit type casting
Person person = tuftsstudent; // Implicit type casting

harshit
Highlight

harshit
Highlight

25

Type Casting between Objects

tuftsstudent

student

person

TuftsStudent
Object instance

26

Inheritance:
Final Class & Final Methods

27

Final Classes
● Final Classes

– Classes that cannot be extended
– To declare final classes, we write,

public final ClassName{
. . .

}

● Example:

● Other examples of final classes are your wrapper
classes and Strings.

public final class Person {
. . .

}

28

Final Methods

● Final Methods
– Methods that cannot be overridden
– To declare final methods, we write,

public final [returnType] [methodName]([parameters]){
. . .

}

● Static methods are automatically final.

29

Example: final Methods

public final String getName(){
 return name;
}

30

 Polymorphism

31

What is Polymorphism?

● Polymorphism
– The ability of a reference variable to change

behavior according to what object instance it is
holding.

– This allows multiple objects of different subclasses
to be treated as objects of a single super class,
while automatically selecting the proper methods to
apply to a particular object based on the subclass it
belongs to.

32

Example: Polymorphism

● Given the parent class Person and the subclass
Student of the previous examples, we add
another subclass of Person which is Employee.

● Below is the class hierarchy for that,

33

Example: Polymorphism

● In Java, we can create a reference that is of type
super class to an object of its subclass. For
example,
public static main(String[] args) {

Student studentObject = new Student();
Employee employeeObject = new Employee();

Person ref = studentObject; //Person reference points
 // to a Student object
}

34

Example: Polymorphism

● Now suppose we have a getName method in our
super class Person, and we override this method in
both Student and Employee subclass's
public class Student {

public String getName(){
System.out.println(“Student Name:” + name);
return name;

}
}

public class Employee {
public String getName(){

System.out.println(“Employee Name:” + name);
return name;

}
}

35

Polymorphism

● Going back to our main method, when we try to call
the getName method of the reference Person ref,
the getName method of the Student object will be
called.

● Now, if we assign ref to an Employee object, the
getName method of Employee will be called.

36

Example: Polymorphism
1 public static main(String[] args) {
2
3 Student studentObject = new Student();
4 Employee employeeObject = new Employee();
5
6 Person ref = studentObject; //Person ref. points to a
7 // Student object
8
9 // getName() method of Student class is called
10 String temp= ref.getName();
11 System.out.println(temp);
12
13 ref = employeeObject; //Person ref. points to an
14 // Employee object
15
16 //getName() method of Employee class is called
17 String temp = ref.getName();
18 System.out.println(temp);
19 }

37

Polymorphism

● Another example that illustrates polymorphism is
when we try to pass a reference to methods as a
parameter

● Suppose we have a static method printInformation
that takes in a Person reference as parameter.

public static printInformation(Person p){
 // It will call getName() method of the
 // actual object instance that is passed
 p.getName();

}

38

Polymorphism

● We can actually pass a reference of type Employee and
type Student to the printInformation method as long as it is a
subclass of the Person class.

public static main(String[] args)
{

Student studentObject = new Student();
Employee employeeObject = new Employee();

printInformation(studentObject);

printInformation(employeeObject);
}

39

 Abstract Class

40

Abstract Classes

● Abstract class
– a class that contains abstract methods, methods which

do not have implementation
– often appears at the top of an object-oriented

programming class hierarchy, defining the broad types of
actions possible with objects of all subclasses of the
class.

– An abstract class cannot instantiated. Another class has
to provide implementation of abstract methods

41

Abstract Classes

● abstract methods
– methods in the abstract classes that do not have

implementation
– To create an abstract method, just write the method

declaration without the body and use the abstract
keyword

● For example,
public abstract void someMethod();

42

Sample Abstract Class
public abstract class LivingThing {

public void breath(){
System.out.println("Living Thing breathing...");

}

public void eat(){
System.out.println("Living Thing eating...");

}

/**
 * abstract method walk
 * We want this method to be overridden by subclasses of
 * LivingThing
 */
public abstract void walk();

}

43

Abstract Classes

● When a class extends the LivingThing abstract
class, it is required to override the abstract method
walk(), or else, that subclass will also become an
abstract class, and therefore cannot be
instantiated.

● For example,
public class Human extends LivingThing {

public void walk(){
System.out.println("Human walks...");

}

}

44

Coding Guidelines

● Use abstract classes to define broad types of
behaviors at the top of an object-oriented
programming class hierarchy, and use its
subclasses to provide implementation details of the
abstract class.

45

Interfaces

46

What is an Interface?

● All methods of an interface are abstract methods
● defines the signatures of a set of methods, without

the body (implementation of the methods)
● defines a standard and public way of specifying the

behavior of classes.
● allows classes, regardless of their locations in the

class hierarchy, to implement common behaviors
● a class implements the interface

47

Example: Interface

// Note that Interface contains just set of method

// signatures without any implementations

public interface Relation {

public boolean isGreater(Object a, Object b);

public boolean isLess(Object a, Object b);

public boolean isEqual(Object a, Object b);

}

48

Example 2: Interface

public interface OperateCar {

 // constant declarations, if any

 // method signatures
 int turn(Direction direction,
 double radius, double startSpeed, double endSpeed);
 int changeLanes(Direction direction, double startSpeed,

double endSpeed);
 int signalTurn(Direction direction, boolean signalOn);
 int getRadarFront(double distanceToCar, double speedOfCar);
 int getRadarRear(double distanceToCar, double speedOfCar);

 // more method signatures
}

49

Why do we use Interfaces?

● To have unrelated classes implement similar methods
– Example:

● Class Line and MyInteger
– Not related
– Both implements comparison methods

● isGreater
● isLess
● isEqual

50

Why do we use Interfaces?

● To reveal an object's programming interface without
revealing its implementation

● To model multiple inheritance which allows a class to have
more than one super class

51

Interface vs. Abstract Class

● Interface methods have no body

● An interface can only define constants

● Interfaces have no direct inherited relationship with any
particular class, they are defined independently

52

Interface vs. Class

● Common:
– Interfaces and classes are both types
– This means that an interface can be used in places

where a class can be used
– For example:

PersonInterface pi = new Person();

Person pc = new Person();

● Difference:
– You cannot create an instance from an interface
– For example:

PersonInterface pi = new PersonInterface(); //ERROR!

53

Interface vs. Class

● Common:
– Interface and Class can both define methods

● Difference:
– Interface does not have any implementation of the

methods

54

Defining Interfaces

● To define an interface, we write:

public interface [InterfaceName] {
 //some methods without the body
}

55

Defining Interfaces

● As an example, let's create an interface that defines
relationships between two objects according to the
“natural order” of the objects.

public interface Relation

{

public boolean isGreater(Object a, Object b);

public boolean isLess(Object a, Object b);

public boolean isEqual(Object a, Object b);

}

56

Implementing Interfaces
● To create a concrete class that implements an interface,

use the implements keyword.

/**

 * Line class implements Relation interface

 */

public class Line implements Relation {

private double x1;

private double x2;

private double y1;

private double y2;

public Line(double x1, double x2, double y1, double y2){

this.x1 = x1;

this.x2 = x2;

this.y1 = y1;

this.y2 = y2;

}

57

Implementing Interfaces
public double getLength(){

double length = Math.sqrt((x2-x1)*(x2-x1) +
(y2-y1)* (y2-y1));

return length;
}

public boolean isGreater(Object a, Object b){
double aLen = ((Line)a).getLength();
double bLen = ((Line)b).getLength();
return (aLen > bLen);

}

public boolean isLess(Object a, Object b){
double aLen = ((Line)a).getLength();
double bLen = ((Line)b).getLength();
return (aLen < bLen);

}

public boolean isEqual(Object a, Object b){
double aLen = ((Line)a).getLength();
double bLen = ((Line)b).getLength();
return (aLen == bLen);

}
}

58

Implementing Interfaces

● When your class tries to implement an interface,
always make sure that you implement all the
methods of that interface, or else, you would
encounter this error,

Line.java:4: Line is not abstract and does not override
abstract method isGreater
(java.lang.Object,java.lang.Object) in Relation

public class Line implements Relation

 ^

1 error

59

Relationship of an Interface to a
Class

● A class can only EXTEND ONE super class, but it can
IMPLEMENT MANY interfaces.

● For example:

public class Person implements PersonInterface,
 WhateverInterface {

//some code here
}

60

Relationship of an Interface to a
Class

● Another example:

public class ComputerScienceStudent
 extends Student

implements PersonInterface,
 AnotherInterface{

//some code here
}

61

Inheritance among Interfaces

● Interfaces are not part of the class hierarchy.
However, interfaces can have inheritance
relationship among themselves

public interface PersonInterface {
. . .

}

public interface StudentInterface
 extends PersonInterface {

. . .
}

62

Interface and Polymorphism

● Interfaces exhibit polymorphism as well, since
program may call an interface method, and the
proper version of that method will be executed
depending on the type of object passed to the
interface method call.

63

Summary

● Inheritance (super class, subclass)
● Using the super keyword to access fields and

constructors of super classes
● Overriding Methods
● Final Methods and Final Classes
● Polymorphism (Abstract Classes, Interfaces)

