
1

12 Basic Exception Handling

2

Objectives

At the end of the lesson, the student should be able to:

● Define exceptions
● Handle exceptions using a simple try-catch-finally

block

3

Exceptions
● An exception

– is an event that interrupts the normal processing flow of a
program. This event is usually some error of some sort.

– This causes our program to terminate abnormally.

4

Examples

● Some examples of exceptions:
– ArrayIndexOutOfBounds exceptions, which occurs if we

try to access a non-existent array element
– NumberFormatException, which occurs when we try to

pass as a parameter a non-number in the
Integer.parseInt method.

5

Handling Exceptions

● To handle exceptions in Java, we use a try-catch-
finally block
– What we do in our programs is that we place the

statements that can possibly generate an exception
inside this block.

6

try-catch-finally block

● The general form of a try-catch-finally block is,

7

try-catch-finally block
● Key aspects about the syntax of the try-catch-finally

construct:
– For each try block, there can be one or more catch blocks,

but only one finally block.
– The catch blocks and finally blocks must always appear in

conjunction with the try block, and in the above order.
– A try block must be followed by AT LEAST one catch block

OR one finally block, or both.
– Each catch block defines an exception handle. The header

of the catch block takes exactly one argument, which is
the exception its block is willing to handle. The exception
must be of the Throwable class or one of its subclasses.

8

Program Flow

9

Example: try-catch

public class ExceptionExample {
public static void main(String[] args){

try{
System.out.println(args[1]);

}
catch(ArrayIndexOutOfBoundsException exp){

 System.out.println("Exception caught!");
}

}
}

10

Summary

● Defined what exceptions are and some sample
exceptions we encountered along the way.

● How to handle exceptions by using the try-catch-
finally block.

