10 Creating your own Classes

JEDI

Objectives

At the end of the lesson, the student should be able to:

. Create their own classes

. Declare properties (fields) and methods for their
classes

. Use the this reference to access instance data
. Create and call overloaded methods
. Import and create packages

. Use access modifiers to control access to class
members

g
o
I

Defining Your Own Class

Defining your own classes

. Things to take note of for the syntax defined in this
section:

* means that there may be 0 or more
occurrences of the

line where it was applied to.

<description> indicates that you have to substitute an
actual value for

this part instead of typing it as it is.
[] Indicates that this part is optional

Defining your own classes
. To define a class, we write:

<modifier> class <name> {
<attributeDeclaration>*
<constructorDeclaration>*
<methodDeclaration>*

}

~where

= <modifier> is an access modifier, which may be combined with
other types of modifier.

E;;
of
I

Example

public class StudentRecord {
//we" 1l add more code here later

}

~where,

. public - means that our class is accessible to other classes
outside the package

. class - this is the keyword used to create a class in Java
. StudentRecord - a unique identifier that describes our
class

Coding Guidelines

. Think of an appropriate name for your class. Don't just
call your class XYZ or any random names you can think
of.

. Class names starts with a CAPITAL letter - not a
requirement, however.

. The filename of your class must have the SAME NAME
as your class name.

g
of
I

Instance Variables

Declaring Properties (Attributes)
. To declare a certain attribute for our class, we write,

<modifier> <type> <name> [=
<default_value>];

Coding Guidelines

. Declare all your instance variables right after “public
class Myclass {*

. Declare one variable for each line.

. Instance variables, like any other variables should start
with a SMALL letter.

. Use an appropriate data type for each variable you
declare.

. Declare instance variables as private so that only class
methods can access them directly.

. Encaptulation
'k
a7
gin

Static Variables

Class (static) variables

public class StudentRecord {

//static variables we have declared
private static int studentCount;
//we" 1l add more code here later

}

-we use the keyword static to indicate that a variable is a static
variable.

Methods

Declaring Methods
. To declare methods we write,

<modifier> <returnType> <name>
(<parameter>*) {

<statement>*

}

~where,

. <modifier> can carry a number of different modifiers
. <returnType> can be any data type (including void)

. <name> can be any valid identifier
. <parameter> ::= <parameter_type> <parameter_name>[,]

E;;
o
I

Accessor (Getter) Methods

. Accessor methods

—used to read values from our class variables
(instance/static).

~usually written as:

get<NameOflnstanceVariable>

_It also returns a value.

Example 1. Accessor (Getter) Method

public class StudentRecord {
private String name;

public String getName(){
return name;

}
}

~where,

. public - means that the method can be called from objects
outside the class

. String - Is the return type of the method. This means that the
method should return a value of type String

"k . getName - the name of the method
| ¢ () - this means that our method does not have any para

Example 2: Accessor (Getter) Method

public class StudentRecord {
private String name; //
some code

// An example In which the business logic i1s //
used to return a value on an accessor method

public double getAverage(){

double result = O;
result=(mathGrade+englishGrade+scienceGrade)/3;

return result;

Mutator (Setter) Methods

. Mutator Methods

-used to write or change values of our class variables
(instance/static).

-Usually written as:

set<NameOflInstanceVariable>

Example: Mutator (Setter) Method

public class StudentRecord {
private String name;

public void setName(String temp){
name = temp;

}
}

~where,

. public - means that the method can be called from objects
outside the class

. void - means that the method does not return any value .
setName - the name of the method

« (String temp) - parameter that will be used inside our metho

Multiple return statements

. You can have multiple return statements for a method

as long as they are not on the same block.
. YOU can also use constants to return values instead of

variables.

Example: Multiple return
statements

public String getNumberInWords(int num){
String defaultNum = ""zero";
1ITC num == 1){
return "one'; //return a constant

}
else 1T(num == 2){
return "two'; //return a constant

}

//return a variable
return defaultNum;

JEDI

Static Methods

Coding Guidelines

. Method names should start with a SMALL letter.
. Method names should be verbs

. Always provide documentation before the declaration of
the method. You can use javadocs style for this. Please
see example.

Example Code

Source Code for StudentRecord
class

public class StudentRecord {

// Instance variables

private
private

private
private

private
private
private

private

String
String
int

double
double
double
double

static

name;
address;
age;
mathGrade;
englishGrade;
scienceGrade;
average;

Int studentCount;

5
I

Source Code for StudentRecord

Class

/**

* Returns the name of the student (Accessor method)
*/

public String getName(){

return name;

+
/**

* Changes the name of the student (Mutator method)

*/

public void setName(String temp){

name = temp;

Source Code for StudentRecord Class

[
* Computes the average of the english, math and science *
grades (Accessor method)

*/
public double getAverage(){

double result = 0;
result = (mathGrade+englishGrade+scienceGrade)/3;

return result;

+

[
* returns the number of iInstances of StudentRecords *
(Accessor method)

*/

public static iInt getStudentCount(){

Yy o return studentCount;
JEDI

Sample Source Code that uses
StudentRecord Class

public class StudentRecordExample

{
public static void main(String[] args){

//create three objects for Student record

StudentRecord annaRecord new StudentRecord();
StudentRecord beahRecord new StudentRecord();
StudentRecord crisRecord new StudentRecord();

//set the name of the students
annaRecord.setName("'Anna™) ;
beahRecord.setName("'Beah');
crisRecord.setName("'Cris™);

//print anna®s name
System.out.printIn(annaRecord.getName());

//print number of students
System.out.printIn("'Count=""+StudentRecord.getStudentCount());

Program Output

Anna
Student Count = 0

“this” Reference

“this” reference

. The this reference
-refers to current object instance itself

-used to access the instance variables shadowed by the
parameters.

. To use the this reference, we type,
this.<nameOfThelnstanceVariable>

. You can only use the this reference for instance variables
and NOT static or class variables.
g
o
!

Example

public void setAge(iInt age){
this.age = age;

}

Overloading Methods

Example

public void print(String temp){

System.
System.
System.

}

out.printIn(’'Name:" + name);
out.printIn(’'Address:" + address);
out.printIn(*Age:" + age);

public void print(double eGrade, double mGrade,

System.
System.
System.
System.

double sGrade)
out.printIn(’'Name:" + name);
out.printIn(’'Math Grade:'" + mGrade);
out.printIn("'English Grade:" + eGrade);
out.printIn(’'Science Grade:" + sGrade);

Example

public static void main(String[] args)
{

StudentRecord annaRecord = new StudentRecord();

annaRecord.setName("'Anna') ;
annaRecord.setAddress("'Philippines');
annaRecord.setAge(15);
annaRecord.setMathGrade(80);
annaRecord.setEnglishGrade(95.5);
annaRecord.setScienceGrade(100) ;

//overloaded methods
annaRecord.print(annaRecord.getName());
annaRecord.print(annaRecord.getEnglishGrade(),
annaRecord.getMathGrade(),
annaRecord.getScienceGrade());

Output

- we will have the output for the first call to print,
Name:Anna
Address:Philippines

Age:15

. we will have the output for the second call to print,

Name:-Anna
Math Grade:80.0

English Grade:95.5
Science Grade:100.0

g;;
of
I

Constructors
(Constructor Methods)

Constructors

. Constructors are important in instantiating an object. It
IS a method where all the initializations are placed.

. The following are the properties of a constructor:

—Constructors have the same name as the class

-A constructor is just like an ordinary method, however only the
following information can be placed in the header of the constructor,

-scope or accessibility identifier (like public...), constructor's name
and parameters if it has any.

-Constructors does not have any return value

-You cannot call a constructor directly, it can only be called by using
the new operator during class instantiation.

g
of
I

Constructors

. 10 declare a constructor, we write,
<modifier> <className> (<parameter>*) {

<statement>*

Default Constructor (Method)

. The default constructor (no-arg constructor)
-Is the constructor without any parameters.

-If the class does not specify any constructors, then an
iImplicit default constructor is created.

Example: Default Constructor
Method of StudentRecord Class

public StudentRecord()
{

//some code here

}

Using Constructors

. To use these constructors, we have the following code,

public static void main(String[] args){
//create three objects for Student record
StudentRecord annaRecord=new StudentRecord(''Anna');
StudentRecord beahRecord=new StudentRecord(''‘Beah,
"Philippines™™);

StudentRecord crisRecord=new StudentRecord
(80,90,100);

//some code here

“this()” constructor call

. Constructor calls can be chained, meaning, you can
call another constructor from inside another
constructor.

- We use the this() call for this
. There are a few things to remember when using the
this constructor call:

- When using the this constructor call, IT MUST OCCUR AS THE
FIRST STATEMENT Iin a constructor

-It can ONLY BE USED IN A CONSTRUCTOR DEFINITION. The
this call can then be followed by any other relevant statements.

g
of
I

Example

1: public StudentRecord(){

2: this(''some string");

3:

4: }

S:

6: public StudentRecord(String temp){

7: this.name = temp;

8: }

9:

10: public static void main(String[] args)
11: {

12:

13: StudentRecord annaRecord = new StudentRecord();

14: }

Packages

Packages

. Packages

-are Java’s means of grouping related classes and

Interfaces together in a single unit (interfaces will be
discussed later).

-This powerful feature provides for a convenient
mechanism for managing a large group of classes and
Interfaces while avoiding potential naming conflicts.

Importing Packages

. To be able to use classes outside of the package you are
currently working in, you need to import the package of
those classes.

. By default, all your Java programs import the java.lang.*
package, that is why you can use classes like String and
Integers inside the program even though you haven't
Imported any packages.

. The syntax for importing packages is as follows:
import <nameOfPackage>;

g
o
I

Example: Importing Packages or
Class

import java.awt.Color;
import java.awt.™;

Placing a Class in a Package

. To place a class in a package, we write the following as
the first line of the code (except comments)

package <packageName>;
package myownpackage;

. Packages can also be nested. In this case, the Java
Interpreter expects the directory structure containing
the executable classes to match the package hierarchy.

package myowndir.myownsubdir.myownpackage;
x
I

Example: Placing StudentRecord
class in SchoolClasses pacakge

package SchoolClasses;

public class StudentRecord {
private String name;
private String address;
private int age;

Classpath

Setting the CLASSPATH

. Now, suppose we place the package schoolClasses
under the C:\ directory.

. We need to set the classpath to point to that directory
so that when we try to run it, the JVM will be able to see
where our classes are stored.

. Before we discuss how to set the classpath, let us take
a look at an example on what will happen if we don't set
the classpath.

g
o
I

Setting the CLASSPATH

. To set the classpath in Windows, we type this at the
command prompt,

C:\schoolClasses> set classpath=C:\

—~assuming C:\ is the directory in which we have placed the
packages meaning there is a directory C:\schoolClasses
and there is a C:\schoolClasses\StudentRecord.class

. After setting the classpath, we can now run our
program anywhere by typing,

C:\schoolClasses> java
schoolClasses.StudentRecord
E;;
I

Setting the CLASSPATH

. For Unix base systems, suppose we have our classes
In the directory /usr/local/myClasses, we write,

export classpath=/usr/local/myClasses

Setting the CLASSPATH

. Take note that you can set the classpath anywhere.
You can also set more than one classpath, we just
have to separate them by ;(for windows) and : (for Unix
based systems). For example,

set classpath=C:\myClasses;D:\;E:\MyPrograms\Java

. and for Unix based systems,

export classpath=/usr/local/java:/usr/myClasses

g
of
I

Access Modifiers

Access Modifiers

. There are four different types of member access
modifiers in Java:

~public
~private
~protected
-Default

. The first three access modifiers are explicitly written In
the code to indicate the access type, for the fourth one
which is default, no keyword is used.

g
o
I

default accessibility

. Default access

-specifies that only classes in the same package can have
access to the class' variables and methods

-no actual keyword for the default modifier; it is applied in
the absence of an access modifier.

Example

public class StudentRecord {
//default access to iInstance variable
Int name;

//default access to method
String getName(){
return name;

}

public accessibility

. public access

-specifies that class members (variables or methods) are
accessible to anyone, both inside and outside the class
and outside of the package.

~-Any object that interacts with the class can have access
to the public members of the class.

-Keyword: public

Example: “public” Access Modifer

public class StudentRecord {

//default access to 1i1nstance variable
public Int name;

//default access to method

public String getName(){
return name;

}

protected accessibility

. protected access

-specifies that the class members are accessible only to
methods in that class and the subclasses of the class.
-Keyword: protected

Example: “protected” Access Modifier

public class StudentRecord {

//default access to i1nstance variable
protected Int name;

//default access to method
protected String getName(){
return name;

}

private accessibility

. private accessibility

-specifies that the class members are only accessible by
the class they are defined In.

-Keyword: private

Example: “private” Access Modifier

public class StudentRecord {

//default access to i1nstance variable
private i1nt name;

//default access to method
private String getName(){
return name;

}

Coding Guidelines

. The instance variables of a class should normally be
declared private, and the class will just provide
accessor and mutator methods to these variables.

Summary

Access Levels
Modifier |Class Package Subclass World
public Y Y Y Y
protected Y Y
no modifier |Y Y
private Y N

Zz zZ2 <

N
N
N

g
o
I

Summary

. Defining your own classes
. Declaring Fields (instance, static/class)

. Declaring Methods (accessor, mutator, static)
. Returning values and Multiple return statements
. The this reference

. Overloading Methods
. Constructors (default, overloading, this() call)

. Packages
. Access Modifiers (default, public, private, protected)

g
o
I

