

10 Creating your own Classes
1

Objectives

At the end of the lesson, the student should be able to:

∉ Create their own classes
∉ Declare properties (fields) and methods for their
classes
∉ Use the this reference to access instance data
∉ Create and call overloaded methods
∉ Import and create packages
∉ Use access modifiers to control access to class
members

2

Defining Your Own Class
3

Defining your own classes

∉ Things to take note of for the syntax defined in this
section:

* means that there may be 0 or more
occurrences of the

line where it was applied to.
<description> indicates that you have to substitute an
actual value for

this part instead of typing it as it is.
[] indicates that this part is optional

4

Defining your own classes

∉ To define a class, we write:

<modifier> class <name> {

 <attributeDeclaration>*

 <constructorDeclaration>*

 <methodDeclaration>*

 }

−where
∉ <modifier> is an access modifier, which may be combined with

other types of modifier.

5

Example

public class StudentRecord {
 //we'll add more code here later

}

−where,
∉ public - means that our class is accessible to other classes

outside the package
∉ class - this is the keyword used to create a class in Java
∉ StudentRecord - a unique identifier that describes our
class

6

Coding Guidelines

∉ Think of an appropriate name for your class. Don't just
call your class XYZ or any random names you can think
of.
∉ Class names starts with a CAPITAL letter - not a
requirement, however.
∉ The filename of your class must have the SAME NAME
as your class name.

7

Instance Variables
8

Declaring Properties (Attributes)

∉ To declare a certain attribute for our class, we write,

<modifier> <type> <name> [=
<default_value>];

9

Instance Variables Instance Variables
public class StudentRecord {

 // Instance variables

public class StudentRecord {

 // Instance variables

private String name; private String name;

private String address; private String address;

private int age; private int age;

private double mathGrade;

private double englishGrade;

private double scienceGrade;

private double average;

private double mathGrade;

private double englishGrade;

private double scienceGrade;

private double average;

//we'll add more code here later //we'll add more code here later

} }

−where, −where,
∉ private here means that the variables are only accessible within the
class. Other objects cannot access these variables directly.
∉ private here means that the variables are only accessible within the
class. Other objects cannot access these variables directly.

We will cover more about accessibility later. We will cover more about accessibility later. 10

Coding Guidelines

∉ Declare all your instance variables right after “public
class Myclass {“
∉ Declare one variable for each line.
∉ Instance variables, like any other variables should start
with a SMALL letter.
∉ Use an appropriate data type for each variable you
declare.
∉ Declare instance variables as private so that only class
methods can access them directly.

∉ Encaptulation

11

Static Variables
12

Class (static) variables

public class StudentRecord {

//static variables we have declared

private static int studentCount;

//we'll add more code here later

}

−we use the keyword static to indicate that a variable is a static
 variable.

13

Methods
14

Declaring Methods

∉ To declare methods we write,

<modifier> <returnType> <name>
(<parameter>*) {

<statement>*

}

−where,
∉

∉

∉

∉

<modifier> can carry a number of different modifiers
<returnType> can be any data type (including void)
<name> can be any valid identifier
<parameter> ::= <parameter_type> <parameter_name>[,]

15

Accessor (Getter) Methods

∉ Accessor methods

−used to read values from our class variables
(instance/static).
−usually written as:

get<NameOfInstanceVariable>

−It also returns a value.

16

Example 1: Accessor (Getter) Method

public class StudentRecord {

private String name;

:

public String getName(){

 return name;

}

}

−where,
∉ public - means that the method can be called from objects
outside the class
∉ String - is the return type of the method. This means that the
method should return a value of type String
∉ getName - the name of the method
∉

17
() - this means that our method does not have any parameters

Example 2: Accessor (Getter) Method

public class StudentRecord {

private String name; //

some code

// An example in which the business logic is //

used to return a value on an accessor method

public double getAverage(){

double result = 0;
result=(mathGrade+englishGrade+scienceGrade)/3;
return result;

}

}

18

Mutator (Setter) Methods

∉ Mutator Methods

−used to write or change values of our class variables
(instance/static).
−Usually written as:

set<NameOfInstanceVariable>

19

Example: Mutator (Setter) Method
public class StudentRecord {

private String name;

:

public void setName(String temp){

 name = temp;
}

}

−where,
∉ public - means that the method can be called from objects
outside the class
∉ void - means that the method does not return any value ∉
setName - the name of the method

∉ (String temp) - parameter that will be used inside our method

20

Multiple return statements

∉ You can have multiple return statements for a method
as long as they are not on the same block.
∉ You can also use constants to return values instead of
variables.

21

Example: Multiple return
statements

public String getNumberInWords(int num){

 String defaultNum = "zero";

if(num == 1){

return "one"; //return a constant
}

else if(num == 2){

return "two"; //return a constant
}

//return a variable

return defaultNum;

}

22

Static Methods
23

Static methods Static methods
public class StudentRecord {

 private static int studentCount;

public class StudentRecord {

 private static int studentCount;

public static int getStudentCount(){ public static int getStudentCount(){

return studentCount; return studentCount;
} }

} }

−where, −where,
∉ public- means that the method can be called from objects
outside the class
∉ public- means that the method can be called from objects
outside the class
∉ static-means that the method is static and should be called by
typing,[ClassName].[methodName]. For example, in this case, we
call the method StudentRecord.getStudentCount()

∉ static-means that the method is static and should be called by
typing,[ClassName].[methodName]. For example, in this case, we
call the method StudentRecord.getStudentCount()
∉ int- is the return type of the method. This means that the method
should return a value of type int
∉ int- is the return type of the method. This means that the method
should return a value of type int
∉ getStudentCount- the name of the method ∉ getStudentCount- the name of the method 24

Coding Guidelines

∉ Method names should start with a SMALL letter.
∉ Method names should be verbs
∉ Always provide documentation before the declaration of
the method. You can use javadocs style for this. Please
see example.

25

Example Code
26

Source Code for StudentRecord
class

public class StudentRecord {

// Instance variables

private String name;

private String address;

private int age;

private double mathGrade;

private double englishGrade;

private double scienceGrade;

private double average;

private static int studentCount;

27

Source Code for StudentRecord
Class

/**

* Returns the name of the student (Accessor method)

*/

public String getName(){

 return name;

}

/**

* Changes the name of the student (Mutator method)

*/

public void setName(String temp){

 name = temp;

}
28

Source Code for StudentRecord Class
/**

* Computes the average of the english, math and science *

grades (Accessor method)

*/

public double getAverage(){

 double result = 0;

result = (mathGrade+englishGrade+scienceGrade)/3;

return result;

}

/**

* returns the number of instances of StudentRecords *

(Accessor method)

*/

public static int getStudentCount(){

 return studentCount;
29

}

Sample Source Code that uses
StudentRecord Class

public class StudentRecordExample
{

public static void main(String[] args){

//create three objects for Student record
StudentRecord annaRecord = new StudentRecord();
StudentRecord beahRecord = new StudentRecord();
StudentRecord crisRecord = new StudentRecord();

//set the name of the students
annaRecord.setName("Anna");
beahRecord.setName("Beah");
crisRecord.setName("Cris");

//print anna's name
System.out.println(annaRecord.getName());

//print number of students
System.out.println("Count="+StudentRecord.getStudentCount());
}

}

30

Program Output

Anna

Student Count = 0

31

“this” Reference
32

“this” reference

∉ The this reference

−refers to current object instance itself
−used to access the instance variables shadowed by the
parameters.

∉ To use the this reference, we type,

this.<nameOfTheInstanceVariable>

∉ You can only use the this reference for instance variables
 and NOT static or class variables.

33

Example
public void setAge(int age){

this.age = age;

}

34

Overloading Methods
35

Overloading Methods Overloading Methods

∉ Method overloading ∉ Method overloading

−allows a method with the same name but different
parameters, to have different implementations and return
values of different types

−allows a method with the same name but different
parameters, to have different implementations and return
values of different types
−can be used when the same operation has different
implementations.
−can be used when the same operation has different
implementations.

∉ Always remember that overloaded methods have the
 following properties:
∉ Always remember that overloaded methods have the
 following properties:

−the same method name −the same method name
−different parameters or different number of parameters −different parameters or different number of parameters
−return types can be different or the same −return types can be different or the same

36

Example
public void print(String temp){
 System.out.println("Name:" + name);
 System.out.println("Address:" + address);
 System.out.println("Age:" + age);
 }

public void print(double eGrade, double mGrade,
 double sGrade)

System.out.println("Name:" + name);
 System.out.println("Math Grade:" + mGrade);
 System.out.println("English Grade:" + eGrade);
 System.out.println("Science Grade:" + sGrade);
 }

37

Example
public static void main(String[] args)
{

StudentRecord annaRecord = new StudentRecord();

annaRecord.setName("Anna");
annaRecord.setAddress("Philippines");
annaRecord.setAge(15);
annaRecord.setMathGrade(80);
annaRecord.setEnglishGrade(95.5);
annaRecord.setScienceGrade(100);

//overloaded methods
annaRecord.print(annaRecord.getName());
annaRecord.print(annaRecord.getEnglishGrade(),
 annaRecord.getMathGrade(),

annaRecord.getScienceGrade());
}

38

Output

∉ we will have the output for the first call to print,

Name:Anna

Address:Philippines

Age:15

∉ we will have the output for the second call to print,
Name:Anna

Math Grade:80.0

English Grade:95.5

Science Grade:100.0

39

Constructors
(Constructor Methods)

40

Constructors

∉ Constructors are important in instantiating an object. It
is a method where all the initializations are placed.

∉ The following are the properties of a constructor:

−Constructors have the same name as the class
−A constructor is just like an ordinary method, however only the
 following information can be placed in the header of the constructor,
−scope or accessibility identifier (like public...), constructor's name
 and parameters if it has any.

−Constructors does not have any return value
−You cannot call a constructor directly, it can only be called by using
 the new operator during class instantiation.

41

Constructors

∉ To declare a constructor, we write,

<modifier> <className> (<parameter>*) {

<statement>*

}

42

Default Constructor (Method)

∉ The default constructor (no-arg constructor)
 −is the constructor without any parameters.

−If the class does not specify any constructors, then an
implicit default constructor is created.

43

Example: Default Constructor
Method of StudentRecord Class
public StudentRecord()

{

//some code here

}

44

Overloading Constructor Methods Overloading Constructor Methods
public StudentRecord(){ public StudentRecord(){

//some initialization code here //some initialization code here

} }

public StudentRecord(String temp){

 this.name = temp;

public StudentRecord(String temp){

 this.name = temp;

} }

public StudentRecord(String name, String address){

 this.name = name;

public StudentRecord(String name, String address){

 this.name = name;

this.address = address; this.address = address;

} }

public StudentRecord(double mGrade, double eGrade,

 double sGrade){

public StudentRecord(double mGrade, double eGrade,

 double sGrade){

mathGrade = mGrade;

 englishGrade = eGrade;

 scienceGrade = sGrade;

 }

mathGrade = mGrade;

 englishGrade = eGrade;

 scienceGrade = sGrade;

 }
45

Using Constructors

∉ To use these constructors, we have the following code,

public static void main(String[] args){

//create three objects for Student record

StudentRecord annaRecord=new StudentRecord("Anna");

StudentRecord beahRecord=new StudentRecord("Beah",

 "Philippines");
StudentRecord crisRecord=new StudentRecord
(80,90,100);

//some code here

}

46

“this()” constructor call

∉ Constructor calls can be chained, meaning, you can
call another constructor from inside another
constructor.
∉ We use the this() call for this
∉ There are a few things to remember when using the
this constructor call:

− When using the this constructor call, IT MUST OCCUR AS THE
 FIRST STATEMENT in a constructor

−It can ONLY BE USED IN A CONSTRUCTOR DEFINITION. The
 this call can then be followed by any other relevant statements.

47

Example
1: public StudentRecord(){
2: this("some string");
3:
4: }
5:
6: public StudentRecord(String temp){
7: this.name = temp;
8: }
9:
10: public static void main(String[] args)
11: {
12:
13: StudentRecord annaRecord = new StudentRecord();
14: }

48

Packages
49

Packages

∉ Packages

−are Java’s means of grouping related classes and
interfaces together in a single unit (interfaces will be
discussed later).
−This powerful feature provides for a convenient
mechanism for managing a large group of classes and
interfaces while avoiding potential naming conflicts.

50

Importing Packages

∉ To be able to use classes outside of the package you are
 currently working in, you need to import the package of
 those classes.
∉ By default, all your Java programs import the java.lang.*
 package, that is why you can use classes like String and
 Integers inside the program even though you haven't

imported any packages.
∉ The syntax for importing packages is as follows:

import <nameOfPackage>;

51

Example: Importing Packages or
Class

import java.awt.Color;

import java.awt.*;

52

Placing a Class in a Package

∉ To place a class in a package, we write the following as
the first line of the code (except comments)

package <packageName>;

package myownpackage;

∉ Packages can also be nested. In this case, the Java
interpreter expects the directory structure containing
the executable classes to match the package hierarchy.

package myowndir.myownsubdir.myownpackage;

53

Example: Placing StudentRecord
class in SchoolClasses pacakge
package SchoolClasses;

public class StudentRecord {

 private String name;

 private String address;

private int age;

:

54

Classpath
55

Setting the CLASSPATH

∉ Now, suppose we place the package schoolClasses
under the C:\ directory.

∉ We need to set the classpath to point to that directory
so that when we try to run it, the JVM will be able to see
where our classes are stored.

∉ Before we discuss how to set the classpath, let us take
a look at an example on what will happen if we don't set
the classpath.

56

Setting the CLASSPATH Setting the CLASSPATH

∉ Suppose we compile and then run the StudentRecord
class we wrote in the last section,
∉ Suppose we compile and then run the StudentRecord
class we wrote in the last section,

C:\schoolClasses>javac StudentRecord.java C:\schoolClasses>javac StudentRecord.java

C:\schoolClasses>java StudentRecord C:\schoolClasses>java StudentRecord
Exception in thread "main" java.lang.NoClassDefFoundError: StudentRecord
(wrong name: schoolClasses/StudentRecord)
Exception in thread "main" java.lang.NoClassDefFoundError: StudentRecord
(wrong name: schoolClasses/StudentRecord)

at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(Unknown Source)
at java.security.SecureClassLoader.defineClass(Unknown Source)
at java.net.URLClassLoader.defineClass(Unknown Source)
at java.net.URLClassLoader.access$100(Unknown Source)
at java.net.URLClassLoader$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method) at
java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source) at
java.lang.ClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClassInternal(Unknown Source)

at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass(Unknown Source)
at java.security.SecureClassLoader.defineClass(Unknown Source)
at java.net.URLClassLoader.defineClass(Unknown Source)
at java.net.URLClassLoader.access$100(Unknown Source)
at java.net.URLClassLoader$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method) at
java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source) at
java.lang.ClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClassInternal(Unknown Source)

57

Setting the CLASSPATH

∉ To set the classpath in Windows, we type this at the
command prompt,

C:\schoolClasses> set classpath=C:\

−assuming C:\ is the directory in which we have placed the
packages meaning there is a directory C:\schoolClasses
and there is a C:\schoolClasses\StudentRecord.class

∉ After setting the classpath, we can now run our
program anywhere by typing,

C:\schoolClasses> java
schoolClasses.StudentRecord

58

Setting the CLASSPATH

∉ For Unix base systems, suppose we have our classes
in the directory /usr/local/myClasses, we write,

export classpath=/usr/local/myClasses

59

Setting the CLASSPATH

∉ Take note that you can set the classpath anywhere.
You can also set more than one classpath, we just
have to separate them by ;(for windows) and : (for Unix
based systems). For example,

set classpath=C:\myClasses;D:\;E:\MyPrograms\Java

∉ and for Unix based systems,
export classpath=/usr/local/java:/usr/myClasses

60

Access Modifiers
61

Access Modifiers

∉ There are four different types of member access
modifiers in Java:

−public
−private
−protected
−Default

∉ The first three access modifiers are explicitly written in
the code to indicate the access type, for the fourth one
which is default, no keyword is used.

62

default accessibility

∉ Default access

−specifies that only classes in the same package can have
access to the class' variables and methods
−no actual keyword for the default modifier; it is applied in
the absence of an access modifier.

63

Example

public class StudentRecord {

 //default access to instance variable

 int name;

//default access to method

String getName(){

return name;
}

}

64

public accessibility

∉ public access

−specifies that class members (variables or methods) are
accessible to anyone, both inside and outside the class
and outside of the package.
−Any object that interacts with the class can have access
to the public members of the class.
−Keyword: public

65

Example: “public” Access Modifer
public class StudentRecord {

//default access to instance variable

public int name;

//default access to method

public String getName(){

 return name;

}

}

66

protected accessibility

∉ protected access

−specifies that the class members are accessible only to
methods in that class and the subclasses of the class.

−Keyword: protected

67

Example: “protected” Access Modifier

public class StudentRecord {

//default access to instance variable

protected int name;

//default access to method

protected String getName(){

 return name;

}

}

68

private accessibility

∉ private accessibility

−specifies that the class members are only accessible by
the class they are defined in.
−Keyword: private

69

Example: “private” Access Modifier
public class StudentRecord {

//default access to instance variable

private int name;

//default access to method

private String getName(){

 return name;

}

}

70

Coding Guidelines

∉ The instance variables of a class should normally be
declared private, and the class will just provide
accessor and mutator methods to these variables.

Summary

Access Levels
Modifier Class Package Subclass World

public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

71

Summary
∉ Defining your own classes
∉ Declaring Fields (instance, static/class)
∉ Declaring Methods (accessor, mutator, static)
∉ Returning values and Multiple return statements
∉ The this reference
∉ Overloading Methods
∉ Constructors (default, overloading, this() call)
∉ Packages
∉ Access Modifiers (default, public, private, protected)

72

