
Introduction to Programming 1 1

6 Control Structures

Introduction to Programming 1 2

Objectives
At the end of the lesson, the student should be able to:

● Use decision control structures (if, else, switch) which allows
selection of specific sections of code to be executed

● Use repetition control structures (while, do-while, for) which
allow executing specific sections of code a number of times

● Use branching statements (break, continue, return) which
allows redirection of program flow

harshit
Inserted Text
재결

harshit
Inserted Text
유의어

harshit
Inserted Text
부분

harshit
Inserted Text
되풀이하다

harshit
Inserted Text
분지

harshit
Inserted Text
을 고치다

harshit
Inserted Text
통하다

Introduction to Programming 1 3

Control Structures
● Control structures

– allows us to change the ordering of how the statements in our
programs are executed

● Two types of Control Structures
– decision control structures

● allows us to select specific sections of code to be executed

– repetition control structures
● allows us to execute specific sections of the code a number of times

harshit
Inserted Text
순서

harshit
Inserted Text
재결

harshit
Inserted Text
되풀이하다

Introduction to Programming 1 4

Decision Control Structures
● Decision control structures

– Java statements that allows us to select and execute specific blocks
of code while skipping other sections

● Types:
– if-statement
– if-else-statement
– If-else if-statement

harshit
Inserted Text
부분

harshit
Inserted Text
뛰어다니다

Introduction to Programming 1 5

if-statement
● if-statement

– specifies that a statement (or block of code) will be executed if and
only if a certain boolean statement is true.

● if-statement has the form:
if(boolean_expression)

statement;

or
if(boolean_expression){

statement1;
statement2;

}

– where,
● boolean_expression is either a boolean expression or boolean variable.

harshit
Cross-Out

harshit
Replacement Text
.【수학】 …인 경우 및 그 경우에 한하여

harshit
Inserted Text
일정한

Introduction to Programming 1 6

if-statement Flowchart

Introduction to Programming 1 7

Example 1
int grade = 68;
if(grade > 60)

System.out.println("Congratulations!");

Introduction to Programming 1 8

Example 2

int grade = 68;
if(grade > 60){

System.out.println("Congratulations!");
System.out.println("You passed!");

}

Introduction to Programming 1 9

Coding Guidelines
1. The boolean_expression part of a statement should

evaluate to a boolean value. That means that the execution
of the condition should either result to a value of true or a
false.

2. Indent the statements inside the if-block.
 For example,

if(boolean_expression){
//statement1;
//statement2;

}

harshit
Inserted Text
만입

harshit
Note
This rule is compulsory (강제적인)

harshit
Note

harshit
Note
This Rule is optional (마음대로의)

Introduction to Programming 1 10

if-else statement
● if-else statement

– used when we want to execute a certain statement if a condition is
true, and a different statement if the condition is false.

● if-else statement has the form:
if(boolean_expression){

statement1;
statement2;
. . .

}
else{

statement3;
statement4;
. . .

}

harshit
Inserted Text
특별한

Introduction to Programming 1 11

Flowchart

Introduction to Programming 1 12

Example 1
int grade = 68;

if(grade > 60)
System.out.println("Congratulations!");

else
System.out.println("Sorry you failed");

Introduction to Programming 1 13

Example 2
int grade = 68;

if(grade > 60){
System.out.println("Congratulations!");
System.out.println("You passed!");

}
else{

System.out.println("Sorry you failed");
}

Introduction to Programming 1 14

Coding Guidelines
1. To avoid confusion, always place the statement or

statements of an if or if-else block inside brackets {}.
2. You can have nested if-else blocks. This means that you

can have other if-else blocks inside another if-else block.
 For example,

if(boolean_expression){
if(boolean_expression){
 //some statements here
}

}

else{
//some statements here

}

harshit
Note
This Rule is optional

Introduction to Programming 1 15

if-else-else if statement
● The statement in the else-clause of an if-else block can be

another if-else structures.
● This cascading of structures allows us to make more

complex selections.
● The statement has the form:

if(boolean_expression1)
statement1;

else if(boolean_expression2)
statement2;

else
statement3;

harshit
Inserted Text
문법】 절(節)

harshit
Inserted Text
다른, 딴

harshit
Note
Unmarked set by harshit

Introduction to Programming 1 16

Flowchart

Introduction to Programming 1 17

Example
int grade = 68;

if(grade > 90){
System.out.println("Very good!");

}
else if(grade > 60){

System.out.println("Very good!");
}
else{

System.out.println("Sorry you failed");
}

Introduction to Programming 1 18

Common Errors
1. The condition inside the if-statement does not evaluate to a

boolean value. For example,
//WRONG
int number = 0;
if(number){

//some statements here
}

The variable number does not hold a boolean value.

2. Writing elseif instead of else if.

harshit
Inserted Text
평가하다

harshit
Note
errors that user generally do when using If-else

Introduction to Programming 1 19

Common Errors
3. Using = instead of == for comparison.

For example,
//WRONG
int number = 0;
if(number = 0){

//some statements here
}

This should be written as,
//CORRECT
int number = 0;
if(number == 0){

//some statements here
}

harshit
Note
This is assignment operator, we want to use equality (==) operator

Introduction to Programming 1 20

Sample Program
1 public class Grade {
2 public static void main(String[] args)
3 {
4 double grade = 92.0;
5 if(grade >= 90){
6 System.out.println("Excellent!");
7 }
8 else if((grade < 90) && (grade >= 80)){
9 System.out.println("Good job!");
10 }
11 else if((grade < 80) && (grade >= 60)){
12 System.out.println("Study harder!");
13 }
14 else{

 System.out.println("Sorry, you failed.");15

16 }
17 }
18 }

Introduction to Programming 1 21

switch-statement
● switch

– allows branching on multiple outcomes.
● switch statement has the form:

switch(switch_expression){
case case_selector1:

statement1;//
statement2;//block 1
break;

case case_selector2:
statement1;//
statement2;//block 2
break;

:
default:

statement1;//
 statement2;//block n

}

harshit
Inserted Text
갈래

harshit
Inserted Text
복합적인

harshit
Inserted Text
성과

Introduction to Programming 1 22

switch-statement
● where,

– switch_expression
● is an integer or character expression

– case_selector1, case_selector2 and so on,
● are unique integer or character constants.

harshit
Note
this is very Important

harshit
Note
Remember this wordCASE SELECTOR

harshit
Highlight

Introduction to Programming 1 23

switch-statement
● When a switch is encountered,

– Java first evaluates the switch_expression, and jumps to the case
whose selector matches the value of the expression.

– The program executes the statements in order from that point on
until a break statement is encountered, skipping then to the first
statement after the end of the switch structure.

– If none of the cases are satisfied, the default block is executed. Take
note however, that the default part is optional.

harshit
Highlight

Introduction to Programming 1 24

switch-statement
● NOTE:

– Unlike with the if statement, the multiple statements are executed in
the switch statement without needing the curly braces.

– When a case in a switch statement has been matched, all the
statements associated with that case are executed. Not only that,
the statements associated with the succeeding cases are also
executed.

– To prevent the program from executing statements in the
subsequent cases, we use a break statement as our last statement.

harshit
Highlight

harshit
Underline

harshit
Inserted Text
버금가는

Introduction to Programming 1 25

Flowchart

Introduction to Programming 1 26

Example
1 public class Grade {
2 public static void main(String[] args)
3 {
4 int grade = 92;
5 switch(grade){
6 case 100:
7 System.out.println("Excellent!");
8 break;
9 case 90:
10 System.out.println("Good job!");
11 break;
12 case 80:
13 System.out.println("Study harder!");
14 break;
15 default:
16 System.out.println("Sorry, you failed.");
17 }
18 }
19 }

Introduction to Programming 1 27

Coding Guidelines
1. Deciding whether to use an if statement or a switch

statement is a judgment call. You can decide which to use,
based on readability and other factors.

2. An if statement can be used to make decisions based on
ranges of values or conditions, whereas a switch statement
can make decisions based only on a single integer or
character value. Also, the value provided to each case
statement must be unique.

harshit
Note
This rule is optional

Introduction to Programming 1 28

Repetition Control Structures
● Repetition control structures

– are Java statements that allows us to execute specific blocks of
code a number of times.

● Types:
– while-loop
– do-while loop
– for-loop

Introduction to Programming 1 29

while-loop
● while loop

– is a statement or block of statements that is repeated as long as
some condition is satisfied.

● while loop has the form:
while(boolean_expression){

statement1;
statement2;
. . .

}

– The statements inside the while loop are executed as long as the
boolean_expression evaluates to true.

Introduction to Programming 1 30

Example 1

int x = 0;

while (x<10) {
 System.out.println(x);
 x++;
}

Introduction to Programming 1 31

Example 2

//infinite loop
while(true)

System.out.println(“hello”);

Introduction to Programming 1 32

Example 3

//no loops
// statement is not even executed
while (false)

System.out.println(“hello”);

Introduction to Programming 1 33

do-while-loop
● do-while loop

– is similar to the while-loop
– statements inside a do-while loop are executed several times as

long as the condition is satisfied
– The main difference between a while and do-while loop:

● the statements inside a do-while loop are executed at least once.

● do-while loop has the form:
do{

statement1;
statement2;
. . .

}while(boolean_expression);

Introduction to Programming 1 34

Example 1

int x = 0;

do {
System.out.println(x);
x++;

}while (x<10);

Introduction to Programming 1 35

Example 2

//infinite loop
do{

System.out.println(“hello”);
} while (true);

Introduction to Programming 1 36

Example 3

//one loop
// statement is executed once
do

System.out.println(“hello”);
while (false);

Introduction to Programming 1 37

Coding Guidelines
1. Common programming mistakes when using the do-while

loop is forgetting to write the semi-colon after the while
expression.
do{

...
 }while(boolean_expression)//WRONG->forgot semicolon;

2. Just like in while loops, make sure that your do-while loops
will terminate at some point

harshit
Highlight

harshit
Inserted Text
마무리하다

Introduction to Programming 1 38

for-loop
● for loop

– allows execution of the same code a number of times.

● for loop has the form:
for(InitializationExpression;LoopCondition;StepExpression)
{

statement1;
statement2;
. . .

}

– where,
● InitializationExpression -initializes the loop variable.
● LoopCondition - compares the loop variable to some limit value.
● StepExpression - updates the loop variable.

harshit
Inserted Text
초기화하다

harshit
Inserted Text
새롭게 함

Introduction to Programming 1 39

Example

● The code shown above is equivalent to the following while
loop.

int i;
for(i = 0; i < 10; i++){

System.out.println(i);
}

int i = 0;
while(i < 10){

System.out.print(i);
i++;

}

Introduction to Programming 1 40

Branching Statements
● Branching statements allows us to redirect the flow of

program execution.

● Java offers three branching statements:
– break
– continue
– return.

Introduction to Programming 1 41

Unlabeled break statement
● unlabeled break

– terminates the enclosing switch statement, and flow of control
transfers to the statement immediately following the switch.

– This can also be used to terminate a for, while, or do-while loop

Introduction to Programming 1 42

Example
String names[]={"Beah","Bianca","Lance","Belle","Nico","Yza","Gem","Ethan"};

String searchName = "Yza";
boolean foundName = false;

for(int i=0; i< names.length; i++){
if(names[i].equals(searchName)){

foundName = true;
break;

}
}
if(foundName) System.out.println(searchName + " found!");
else System.out.println(searchName + " not found.");

Introduction to Programming 1 43

labeled break statement
● labeled break statement

– terminates an outer statement, which is identified by the label
specified in the break statement.

– the flow of control transfers to the statement immediately following
the labeled (terminated) statement.

– The sample program in the next slide searches for a value in a two-
dimensional array. Two nested for loops traverse the array. When
the value is found, a labeled break terminates the statement labeled
search, which is the outer for loop.

Introduction to Programming 1 44

Example
int[][] numbers = {{1, 2, 3}, {4, 5, 6},{7, 8, 9}};
int searchNum = 5;
boolean foundNum = false;

searchLabel:
for(int i=0; i<numbers.length; i++){

for(int j=0; j<numbers[i].length; j++){
if(searchNum == numbers[i][j]){

foundNum = true;
break searchLabel;

}
}

}
if(foundNum) System.out.println(searchNum + " found!");
else System.out.println(searchNum + " not found!");

harshit
Underline

harshit
Underline

harshit
Note
Number of rows

harshit
Note
Number of elements in a row

harshit
Underline

harshit
Underline

harshit
Note
break the loop of this label

Introduction to Programming 1 45

Unlabeled continue statement
● unlabeled continue statement

– skips to the end of the innermost loop's body and evaluates the
boolean expression that controls the loop, basically skipping the
remainder of this iteration of the loop.

Introduction to Programming 1 46

Example
String names[] = {"Beah", "Bianca", "Lance", "Beah"};
int count = 0;

for(int i=0; i<names.length; i++){
if(!names[i].equals("Beah")){

continue; //skip next statement
}
count++;

}
System.out.println("There are "+count+" Beahs in the list");

harshit
Underline

harshit
Note
Skip count++ statement

Introduction to Programming 1 47

Labeled continue statement
● labeled continue statement

– skips the current iteration of an outer loop marked with the given
label.

Introduction to Programming 1 48

Example
outerLoop:
for(int i=0; i<5; i++){

for(int j=0; j<5; j++){
System.out.println("Inside for(j) loop"); //message1
if(j == 2) continue outerLoop;

}
System.out.println("Inside for(i) loop"); //message2

}
● In this example, message 2 never gets printed since we have the statement

continue outerloop which skips the iteration.

Introduction to Programming 1 49

return statement
● return statement

– used to exit from the current method.
– flow of control returns to the statement that follows the original

method call.

Introduction to Programming 1 50

return statement
● To return a value

– simply put the value (or an expression that calculates the value)
after the return keyword.

– For example,
return ++count;
or
return "Hello";

– The data type of the value returned by return must match the type of
the method's declared return value.

Introduction to Programming 1 51

return statement
● When a method is declared void, use the form of return that

doesn't return a value.
– For example,

return;

● We will cover more about return statements later when we
discuss about methods.

Introduction to Programming 1 52

Summary
● Decision Control Structures

– if
– if-else
– if – else if
– switch

● Repetition Control Structures
– while
– do-while
– for

● Branching Statements
– break
– continue
– return

