6 Control Structures

b
a\:
Jél Introduction to Programming 1

Objectives

At the end of the lesson, the student should be able to:

e Use decisior}\control structures (if, else, switch) which allows
selection of specifig\sectiong\of code to be executed

* Use repetitior}\control structures (while, do-while, for) which
allow executing specific sections of code a number of times

e Use branchin%\statements (break, continue, return) which
allows redirec ior}\of program ﬂOWA

ke
e
él Introduction to Programming 1

harshit
Inserted Text
재결

harshit
Inserted Text
유의어

harshit
Inserted Text
부분

harshit
Inserted Text
되풀이하다

harshit
Inserted Text
분지

harshit
Inserted Text
을 고치다

harshit
Inserted Text
통하다

Control Structures

e Control structures

- allows us to change the ordering\of how the statements in our
programs are executed

* Two types of Control Structures

- decisior)\control structures
* allows us to select specific sections of code to be executed
- repetitior}\control structures

» allows us to execute specific sections of the code a number of times

ke
e
él Introduction to Programming 1

harshit
Inserted Text
순서

harshit
Inserted Text
재결

harshit
Inserted Text
되풀이하다

Decision Control Structures

e Decision control structures

- Java statements that allows us to select and execute specific bIocksA
of code while skipping\other sections

* Types:
- if-statement
- if-else-statement

- If-else if-statement

ke
e
él Introduction to Programming 1

harshit
Inserted Text
부분

harshit
Inserted Text
뛰어다니다

if-statement

e jf-statement

- specifies that a statement (or block of code) will be executed ifand
enJy—if\a certair)\boolean statement is true.

e f-statement has the form:

| f(bool ean_expression)
st at enent ;

or

| f(bool ean_expression){
st at enent 1;
st at enent 2;

}

- where,

* boolean_expression is either a boolean expression or boolean variable.

ke
e
él Introduction to Programming 1

harshit
Cross-Out

harshit
Replacement Text
.【수학】 …인 경우 및 그 경우에 한하여

harshit
Inserted Text
일정한

if-statement Flowchart

true false
oolean expr

=tatemnent

b
a\:
Jél Introduction to Programming 1

Example 1

int grade = 68;
if (grade > 60)
System.out.println ("Congratulations!");

ke
a'\.-
J I Introduction to Programming 1

Example 2

int grade = 68;
if(grade > 60) {

System.out.println ("Congratulations!");

System.out.println("You passed!");

ke
I Introduction to Programming 1

Coding Guidelines

1. The boolean_expression part of a statement should
evaluate to a boolean value. That means that the execution

of the condition should either result to a value of true or a
false.&

2. Indent the statements inside the if-block.=

For example,

| f (bool ean_expression){
[/ statenent1;
/| st at ement 2;

ke
e
él Introduction to Programming 1

harshit
Inserted Text
만입

harshit
Note
This rule is compulsory (강제적인)

harshit
Note

harshit
Note
This Rule is optional (마음대로의)

if-else statement

e jf-else statement

- used when we want to execute a certair}\statement if a condition is
true, and a different statement if the condition is false.

e |f-else statement has the form:

| f(bool ean_expression){
st at enent 1;
st at enent 2;

}
el se{
st at enent 3;
st at enent 4;
}

ke
e
él Introduction to Programming 1

harshit
Inserted Text
특별한

Flowchart

true tal=e
oolean_e=pr
"\' l
=tatement =tatemnent

Introduction to Programming 1

Example 1

int grade = 68;

1f(grade > 60)

System.out.println ("Congratulations!");

else

System.out.println("Sorry you failed");

ke
I Introduction to Programming 1

Example 2

int grade = 68;

if (grade > 60) {

System.out.println ("Congratulations!");
System.out.println ("You passed!");

J

else/{

System.out.println("Sorry you failed");

b
él Introduction to Programming 1

Coding Guidelines

1. To avoid confusion, always place the statement or
statements of an if or if-else block inside brackets {}.&

2. You can have nested if-else blocks. This means that you
can have other if-else blocks inside another if-else block.

For example,

| f (bool ean_expression){
| f (bool ean_expression){
/] sone statenents here

}
}

el se{
/] sonme statenents here

}

ke
e
él Introduction to Programming 1

harshit
Note
This Rule is optional

if-else-else if statement

The statement in the else-clausg\of an if-else block can be
anotheg\if-else structures.

This cascading of structures allows us to make more
complex selections.

The statement has the form:

| f(bool ean_expressionl)
st at enent 1;

el se i f(bool ean_expression2)
st at enent 2;

el se
st at enent 3;

Introduction to Programming 1

harshit
Inserted Text
문법】 절(節)

harshit
Inserted Text
다른, 딴

harshit
Note
Unmarked set by harshit

trus

=)

=tatementl

Flowchart

fal=se

oolean e=xpr

trues
boolean expr

statement 2

fal==

e

=s=tatement 3

g
i

W

Introduction to Programming 1

Example

| nt grade = 68;

if(grade > 90){
Systemout.println("Very good!");
}

else if(grade > 60){
Systemout.println("Very good!");

}
el se{

Systemout.println("Sorry you failed");
}

b
a\..-
Jél Introduction to Programming 1

. Writing elseif instead of else if.

S
Common Errors

. The condition inside the if-statement does not evaluatg\to a

boolean value. For example,
| [WRONG
| nt nunber = O;
| f(nunber){
[/ sone statenents here
}
The variable number does not hold a boolean value.

Introduction to Programming 1

harshit
Inserted Text
평가하다

harshit
Note
errors that user generally do when using If-else

Common Errors

3. Using = instead of == for comparison.

For example,
[[WRONG
| nt nunber = O;
| f(nunber =_0){
[/ sone st'at enents here

}

This should be written as,
[| CORRECT
| nt nunber = O;
| f(nunber == 0){
[/ sone statenents here
}

ke
I Introduction to Programming 1

harshit
Note
This is assignment operator, we want to use equality (==) operator

OCONOUITRWNEF

Sample Program

public class Gade {
public static void main(String[] args)

{
doubl e grade = 92. 0;

i f(grade >= 90){
Systemout.println("Excellent!");

}
else if((grade < 90) && (grade >= 80)){
Systemout. println("Good job!");

}

else if((grade < 80) && (grade >= 60)){
Systemout.println("Study harder!");

}

el se{
Systemout.println("Sorry, you failed.");

Introduction to Programming 1

switch-statement

e switch

- allows branching\on muItipIerutcomesk

e switch statement has the form:

swtch(switch expression){

case case_sel ectorl:
statenent1:;//
statenent2;://block 1
br eak;

case case_sel ector 2:
statenent1://
statenent2;//bl ock 2
br eak;

default}

statenent1://
statenent 2:// bl ock n

ke
e
I Introduction to Programming 1

harshit
Inserted Text
갈래

harshit
Inserted Text
복합적인

harshit
Inserted Text
성과

switch-statement

* where,

- switch_expression Yy
* is an integer or character expression
- case_select%%, case_selector2 and so on,

* are unique integer or character constants.

Introduction to Programming 1

harshit
Note
this is very Important

harshit
Note
Remember this word
CASE SELECTOR

harshit
Highlight

switch-statement

e \When a switch is encountered,

- Java first evaluates the switch_expression, and jumps to the case
whose selector matches the value of the expression.

- The program executes the statements in order from that point on
until a break statement is encountered, skipping then to the first
statement after the end of the switch structure.

- |f none of the cases are satisfied, the default block is executed. Take
note however, that the default part is optional.

ke
e
Jél Introduction to Programming 1

harshit
Highlight

switch-statement

NOTE:

- Unlike with the if statement, the multiple statements are executed in
the switch statement without needing the curly braces.

- When a case in a switch statement has been matched, all the
statements associated with that case are executed. Not only that,
the statements associated with the succeeding cases are also
executed.

- To prevent the program from executing statements in the
subsequen;\cases, we use a break statement as our last statement.

Introduction to Programming 1

harshit
Highlight

harshit
Underline

harshit
Inserted Text
버금가는

Flowchart

true

Cas=s =s=lector

tLrue

Cazs =selector

W

Bloslk: 1 =tatements

fal==

trus

h 4

block 2 =statemsents

W/

bBresle

mase s=electoxr

fal=e

default block
statemesnts

G

W

bBlocle 3 s=tatements

xx

Introduction to Programming 1

Example

public class G ade {
public static void main(String[] args)
{
| nt grade = 92;
swi t ch(grade){
case 100:
Systemout.println("Excellent!");
br eak;
case 90:
Systemout.println("Good job!");
br eak;
case 80:
Systemout.println("Study harder!");
br eak;
def aul t:
Systemout.println("Sorry, you failed.");

1
2
3
4
5
6
!
8
9

Introduction to Programming 1

Coding Guidelines

1. Deciding whether to use an if statement or a switch

statement is a judgment call. You can decide which to use,
based on readability and other factors.&®

. An if statement can be used to make decisions based on

ranges of values or conditions, whereas a switch statement
can make decisions based only on a single integer or
character value. Also, the value provided to each case
statement must be unique.

Introduction to Programming 1

harshit
Note
This rule is optional

Repetition Control Structures

* Repetition control structures

- are Java statements that allows us to execute specific blocks of
code a number of times.

* Types:
- while-loop
— do-while loop

- for-loop

ke
e
él Introduction to Programming 1

while-loop

* while loop

- is a statement or block of statements that is repeated as long as
some condition is satisfied.

* while loop has the form:

whi | e(bool ean_expressi on){
st at enent 1;
st at enent 2;

- The statements inside the while loop are executed as long as the
boolean_expression evaluates to true.

ke
e
él Introduction to Programming 1

Example 1

Int x = 0;

whil e (x<10) {
System out. println(x);
X++:

}

Introduction to Programming 1

Example 2

[linfinite | oop
whi |l e(true)
Systemout.printin(“hello”);

Introduction to Programming 1

Example 3

// no | oops
/] statenent 1S not even executed
while (fal se)

Systemout.printin(“hello”);

b
a\:
Jél Introduction to Programming 1

do-while-loop

* do-while loop
— is similar to the while-loop

- statements inside a do-while loop are executed several times as
long as the condition is satisfied

- The main difference between a while and do-while loop:

* the statements inside a do-while loop are executed at least once.

* do-while loop has the form:
do{
st at enent 1;
st at enent 2;

}mhilé('boolean_expression)

ke
e
él Introduction to Programming 1

Example 1

int x = 0;

do {
System out. printl n(x);
X++:

}whil e (x<10);

ke
a'\.-
J I Introduction to Programming 1

Example 2

[linfinite | oop

do{
Systemout.printlin(“hello”);

} while (true);

Introduction to Programming 1

Example 3

[/ one | oop
[/ statenent I s executed once
do

Systemout.printlin(“hello”);
while (false);

b
a\:
Jél Introduction to Programming 1

Coding Guidelines

1. Common programming mistakes when using the do-while
loop is forgetting to write the semi-colon after the while

expression.
do {

}while (boolean expression)//WRONG->forgot semicolon;

2. Just like in while loops, make sure that your do-while loops
will terminateAat some point

ke
e
él Introduction to Programming 1

harshit
Highlight

harshit
Inserted Text
마무리하다

for-loop

e for loop

- allows execution of the same code a number of times.

* for loop has the form:
for(Initializati onExpression; LoopCondition; StepExpression)

{

st at enent 1;
st at enent 2;

}
- where,

* [nitializationExpression -initializesAthe loop variable.
* LoopCondition - compares the loop variable to some limit value.
» StepExpression - update§\the loop variable.

Introduction to Programming 1

harshit
Inserted Text
초기화하다

harshit
Inserted Text
새롭게 함

Example

Int 1,
for(i =0; i < 10; i++){
Systemout.println(i);
}
* The code shown above is equivalent to the following while
loop.
int 1 = 0;

while(i < 10){
Systemout. print(i);
| ++;

ke
I Introduction to Programming 1

Branching Statements

* Branching statements allows us to redirect the flow of
program execution.

» Java offers three branching statements:
- break
- continue

— return.

ke
e
él Introduction to Programming 1

Unlabeled break statement

* unlabeled break

- terminates the enclosing switch statement, and flow of control
transfers to the statement immediately following the switch.

- This can also be used to terminate a for, while, or do-while loop

ke
e
él Introduction to Programming 1

Example

String names|[]={"Beah","Bianca", "Lance","Belle","Nico","Yza", "Gem", "Ethan"};

String searchName = "Yza";

boolean foundName = false;

for(int 1=0; i< names.length; i++) {

if(names[i].equals(searchName)) {
foundName = true;
break;
}
}
if (foundName) System.out.println(searchName + " found!");
else System.out.println(searchName + " not found.");

Introduction to Programming 1

labeled break statement

e |abeled break statement

- terminates an outer statement, which is identified by the label
specified in the break statement.

- the flow of control transfers to the statement immediately following
the labeled (terminated) statement.

- The sample program in the next slide searches for a value in a two-
dimensional array. Two nested for loops traverse the array. When
the value is found, a labeled break terminates the statement labeled
search, which is the outer for loop.

ke
e
él Introduction to Programming 1

Example

int[][] numbers = {{1, 2, 3}, {4, 5, o},{7, 8, 9}};
int searchNum = 5;

boolean foundNum = false;

searchlabel:

for(int 1=0; i<numbers.length; i++) {

for(int jJ=0; J<numbers[i].length7 jJ++) {

if(searchNum == numbers[i][]]) {

foundNum = true;
break searchLabel=)

}

if(foundNum) System.out.println(searchNum + " found!");

kelse System.out.println (searchNum + " not found!")

Introduction to Programming 1

harshit
Underline

harshit
Underline

harshit
Note
Number of rows

harshit
Note
Number of elements in a row

harshit
Underline

harshit
Underline

harshit
Note
break the loop of this label

Unlabeled continue statement

e unlabeled continue statement

- skips to the end of the innermost loop's body and evaluates the
boolean expression that controls the loop, basically skipping the
remainder of this iteration of the loop.

ke
e
él Introduction to Programming 1

Example

String names[] = {"Beah", "Bianca", "Lance", "Beah"};

int count = 0;

for(int 1=0; i<names.length; 1i++) {
1f(!'names[i] .equals("Beah")) {
@ continue; //skip next statement
}

count++;

}

System.out.println ("There are "+count+" Beahs in the list");

Introduction to Programming 1

harshit
Underline

harshit
Note
Skip count++ statement

Labeled continue statement

e |abeled continue statement

- skips the current iteration of an outer loop marked with the given
label.

ke
I Introduction to Programming 1

Example

outerloop:
for(int 1=0; 1i<5; 1i++){

for(int J=0; 3J<5; J++) {

System.out.println ("Inside for(j) loop"); //messagel
1f(] ==) continue outerLoop;

}

System.out.println ("Inside for (i) loop"™); //message?2

}

* |n this example, message 2 never gets printed since we have the statement
continue outerloop which skips the iteration.

Introduction to Programming 1

return statement

e return statement
— used to exit from the current method.

- flow of control returns to the statement that follows the original
method call.

ke
I Introduction to Programming 1

return statement

e Toreturn a value

- simply put the value (or an expression that calculates the value)
after the return keyword.

- For example,
return ++count;

or

return "Hello";

- The data type of the value returned by return must match the type of
the method's declared return value.

ke
e
él Introduction to Programming 1

return statement

* \When a method is declared void, use the form of return that
doesn't return a value.

- For example,

return;

e \We will cover more about return statements later when we
discuss about methods.

ke
e
él Introduction to Programming 1

Summary

Decision Control Structures
- if

- if-else

- if—else if

- switch

Repetition Control Structures
- while

- do-while

- for

Branching Statements

- break

- continue
— return Introduction to Programming 1

