
Sun Microsystems, Inc.
MS BRM01-209
500 Eldorado Boulevard
Broomfield, Colorado 80021
U.S.A.

®

Java™ProgrammingLanguage

Revision D, April 2000

SL-275

StudentGuideWithInstructorNotes

Please

Recycle

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Parts of this product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a
registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company Ltd. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

Sun, Sun Microsystems, the Sun logo, Solstice, Java, JavaBeans, JavaChip, Java HotSpot, JavaOS, JavaSoft, JDBC, JDK,
JVM, OpenWindows, Write Once, Run Anywhere and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U. S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
in the U. S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

Netscape Navigator is a trademark of Netscape Communications Corporation.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

X Window System is a product of the X Consortium, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

iii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Contents
About This Course ...xix

Course Goal ... xix
Course Overview ... xx
Course Map.. xxi
Module-by-Module Overview ... xxii
Course Objectives... xxvi
Skills Gained by Module.. xxvii
Guidelines for Module Pacing ... xxviii
Topics Not Covered.. xxix
How Prepared Are You?... xxx
Introductions ... xxxi
How to Use Course Materials .. xxxii
Course Icons and Typographical Conventions xxxiv

Course Icons.. xxxiv
Typographical Conventions ...xxxv

Notes to the Instructor.. xxxvii

Getting Started ...1-1
Objectives ... 1-1
Relevance.. 1-2
Additional Resources ... 1-3
What Is the Java Technology? ... 1-4

Primary Goals of the Java Technology1-5
A Basic Java Application.. 1-8

TestGreeting.java ..1-8
Greeting.java ...1-8
TestGreeting Described ..1-9
Greeting Described ...1-12
Compiling and Running TestGreeting1-14
Troubleshooting the Compilation ..1-16

Java - Behind the Scenes... 1-18
The Java Runtime Environment..1-18
The Java Virtual Machine ..1-19

iv Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Garbage Collection ...1-22
Code Security...1-24

Exercise: Performing Basic Tasks.. 1-30
Preparation...1-30
Tasks ...1-30

Check Your Progress .. 1-31
Think Beyond .. 1-32

Object-Oriented Programming ...2-1
Objectives ... 2-1
Relevance.. 2-2
What Is Object-Oriented Programming?....................................... 2-3

Analysis and Design...2-5
Analysis and Design Example ..2-7
Abstraction...2-8
Classes as Blueprints for Objects ..2-9

Declaring Java Classes.. 2-10
Declaring Attributes ... 2-11
Declaring Methods.. 2-12
Accessing Object Members.. 2-14
Information Hiding... 2-15

The Problem...2-15
The Solution ...2-16

Encapsulation .. 2-17
Declaring Constructors .. 2-18
The Default Constructor .. 2-20
Source File Layout .. 2-21
Software Packages .. 2-23
The package Statement.. 2-24
The import Statement.. 2-26
Directory Layout and Packages .. 2-28

Development ...2-29
Deployment ...2-30

Terminology Recap... 2-31
Using the Java Technology API Documentation........................ 2-32
Exercise: Using Objects and Classes... 2-35

Preparation...2-35
Tasks ...2-35
Exercise Summary...2-36

Check Your Progress .. 2-37
Think Beyond .. 2-38

Identifiers, Keywords, and Types...3-1
Objectives ... 3-1
Relevance.. 3-2
Comments .. 3-3
Semicolons, Blocks, and Whitespace.. 3-4

v
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Identifiers ... 3-7
Java Keywords... 3-9
Basic Java Types .. 3-10

Primitive Types ...3-10
Logical – boolean ...3-11
Textual – char and String ...3-12
Integral – byte , short , int , and long3-14
Floating Point – float and double3-17

Variables, Declarations, and Assignments.................................. 3-19
Java Reference Types.. 3-20
Constructing and Initializing Objects .. 3-21

Memory Allocation and Layout..3-22
Explicit Attribute Initialization ...3-23
Executing the Constructor ...3-24
Variable Assignment ..3-25
This Is Not the Whole Story ..3-26

Assignment of Reference Types.. 3-27
Pass-by-Value .. 3-29
The this Reference... 3-32
Java Coding Conventions .. 3-35
Exercise: Using Objects .. 3-38

Preparation...3-38
Tasks ...3-38
Exercise Summary...3-39

Check Your Progress .. 3-40
Think Beyond .. 3-41

Expressions and Flow Control...4-1
Objectives ... 4-1
Relevance.. 4-2
Expressions .. 4-3

Variables and Scope..4-3
Variable Scope Example...4-5
Variable Initialization ...4-6
Operators..4-7
Logical Operators..4-8
Short-Circuit Logical Operators..4-9
Bitwise Logical Operators..4-10
Right-Shift Operators >> and >>>..4-11
Left-Shift Operator (<<) ...4-13
Shift Operator Examples ..4-14
String Concatenation With +...4-15
Casting..4-16
Promotion and Casting of Expressions................................4-18

vi Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Branching Statements ... 4-20
if , else Statements...4-20
switch Statement ..4-22

Looping Statements .. 4-25
for Loops ...4-25
while Loops...4-27
do Loops ...4-29

Special Loop Flow Control .. 4-31
Example ..4-33

Exercise: Using Expressions .. 4-34
Preparation...4-34
Tasks ...4-34
Exercise Summary...4-35

Check Your Progress .. 4-36
Think Beyond .. 4-37

Arrays ...5-1
Objectives ... 5-1
Relevance.. 5-2
Declaring Arrays ... 5-3
Creating Arrays ... 5-5
Initializing Arrays ... 5-7
Multi-Dimensional Arrays... 5-9
Array Bounds .. 5-11
Array Resizing... 5-12
Copying Arrays ... 5-13
Exercise: Using Arrays ... 5-14

Preparation...5-14
Tasks ...5-14
Exercise Summary...5-15

Check Your Progress .. 5-16
Think Beyond .. 5-17

Inheritance...6-1
Objectives ... 6-1
Relevance.. 6-2
Subclassing... 6-3

The is a Relationship..6-3
Single Inheritance..6-6
Constructors Are Not Inherited..6-8

Polymorphism ... 6-9
Heterogeneous Collections..6-11
Polymorphic Arguments ...6-13
The instanceof Operator...6-14
Casting Objects ..6-16

The has a Relationship ... 6-18
Access Control ... 6-19

vii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overloading Method Names... 6-20
Overloading Constructors ... 6-22
Overriding Methods ... 6-24
Invoking Overridden Methods ... 6-28

Rules About Overridden Methods6-28
The super Keyword ...6-30

Invoking Parent Class Constructors... 6-32
Constructing and Initializing Objects: A Slight Reprise............ 6-34

Implications of the Initialization Process6-37
The Object Class .. 6-39
The == Operator Compared With the equals Method............. 6-40

Example ..6-41
The toString Method ... 6-43
Wrapper Classes.. 6-44
Exercise: Using Objects and Classes... 6-46

Preparation...6-46
Tasks ...6-46
Exercise Summary...6-47

Check Your Progress .. 6-48
Think Beyond .. 6-49

Advanced Class Features ..7-1
Objectives ... 7-1
Relevance.. 7-2
The static Keyword ... 7-3

Class Attributes ...7-4
Class Methods ...7-6
Static Initializers ..7-8
Implementing the Singleton Design Pattern.......................7-10

The final Keyword ... 7-12
Final Classes...7-12
Final Methods ..7-13
Final Variables ...7-14

Exercise: Working With the static and final Keywords...... 7-15
Preparation...7-15
Tasks ...7-15
Exercise Summary...7-16

Abstract Classes... 7-17
The Scenario...7-17
The Problem...7-18
The Solution ...7-19
Template Method Design Pattern...7-21

Interfaces .. 7-22
The Flyer Example ..7-23
Multiple Interface Example ...7-27

Inner Classes .. 7-29

viii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Properties of Inner Classes .. 7-34
Exercise: Working With Interfaces and Abstract Classes 7-37

Preparation...7-37
Tasks ...7-37
Exercise Summary...7-38

Check Your Progress .. 7-39
Think Beyond .. 7-40

Exceptions..8-1
Objectives ... 8-1
Relevance.. 8-2
Exceptions .. 8-3

Introduction ...8-3
Example ..8-5

Exception Handling.. 8-6
Introduction ...8-6
try and catch Statements...8-7
The Call Stack Mechanism...8-8
finally Statement ...8-9
Example Revisited ..8-11

Exception Categories .. 8-13
Common Exceptions... 8-15
The Handle or Declare Rule .. 8-17
Method Overriding and Exceptions... 8-19
Creating Your Own Exceptions .. 8-23

Introduction ...8-23
Example ..8-24

Exercise: Handling and Creating Exceptions.............................. 8-26
Preparation...8-26
Tasks ...8-26
Exercise Summary...8-27

Check Your Progress .. 8-28
Think Beyond .. 8-29

Text-Based Applications...9-1
Objectives ... 9-1
Relevance.. 9-2
Command-Line Arguments .. 9-3
System Properties.. 9-4

The Properties Class ...9-5
Console I/O ... 9-7

Writing to Standard Output ..9-8
Reading From Standard Input ..9-9

Files and File I/O .. 9-11
Creating a New File Object ...9-12
File Tests and Utilities..9-14

ix
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

File Stream I/O..9-16
File Output ...9-18

Exercise: File Input and Output .. 9-20
Preparation...9-20
Tasks ...9-20

The Math Class... 9-21
The String Class .. 9-23
The StringBuffer Class ... 9-25
The Collections API .. 9-27

A Set Example..9-29
A List Example ..9-30
Iterators...9-31
Maps..9-33
A Map Example...9-34
Sorting...9-35
Sorting Examples ..9-37
Collections in JDK 1.1 ...9-40

Exercise: Using Collections to Represent Aggregation 9-41
Preparation...9-41
Tasks ...9-41

Using the javadoc Tool ... 9-42
Documentation Tags...9-43
Example ..9-44

Deprecation.. 9-47
Using the jar Tool.. 9-51
Exercise: Building a System... 9-52

Preparation...9-52
Tasks ...9-52
Exercise Summary...9-53

Check Your Progress .. 9-54
Think Beyond .. 9-55

Building Java GUIs..10-1
Objectives ... 10-1
Relevance.. 10-2
The AWT .. 10-3
The java.awt Package... 10-5
Building Graphical User Interfaces .. 10-6

Containers ..10-6
Positioning Components..10-8
Component Sizing...10-9

Frames... 10-10
Panels .. 10-12
Container Layouts... 10-14

Layout Managers ..10-15
Default Layout Managers ..10-16

x Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple FlowLayout Example.. 10-17
The main Method ..10-18

Layout Managers .. 10-20
FlowLayout Manager...10-20
BorderLayout Manager ..10-24
GridLayout Manager...10-29
CardLayout Manager...10-33
GridBagLayout Manager ..10-36

Creating Panels and Complex Layouts 10-37
Drawing in AWT... 10-39
Exercise: Building Java GUIs... 10-41

Preparation...10-41
Tasks ...10-41
Exercise Summary...10-42

Check Your Progress .. 10-43
Think Beyond .. 10-44

GUI Event Handling..11-1
Objectives ... 11-1
Relevance.. 11-2
What Is an Event? ... 11-3

Event Sources...11-4
Event Handlers..11-4

Java 2 SDK Event Model .. 11-5
Delegation Model..11-5

GUI Behavior ... 11-9
Event Categories ...11-9
Complex Example...11-12
Multiple Listeners ...11-16

Event Adapters.. 11-18
Event Handling Using Inner Classes ... 11-20
Event Handling Using Anonymous Classes............................. 11-21
Exercise: Working With Events .. 11-22

Preparation...11-22
Tasks ...11-22
Exercise Summary...11-23

Check Your Progress .. 11-24
Think Beyond .. 11-25

Introduction to Java Applets..12-1
Objectives ... 12-1
Relevance.. 12-2
What Is an Applet? ... 12-3

Loading an Applet ..12-3
Applet Security Restrictions ..12-5

xi
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Writing an Applet ... 12-7
Applet Class Hierarchy..12-7
Key Applet Methods ..12-8

Applet Methods and the Applet Life Cycle 12-9
init ...12-9
start ..12-10
stop ...12-10

Applet Display .. 12-11
The paint Method and the Graphics Object12-12

AWT Painting .. 12-13
The paint Method..12-14
The repaint Method ...12-14
The update Method..12-14
Method Interaction ...12-15
Applet Display Strategies ..12-16

An Example Paint Model... 12-18
What Is the appletviewer ? .. 12-21
Starting Applets With the appletviewer 12-22

Synopsis..12-23
Example ..12-23

The applet Tag... 12-24
Syntax ...12-24
Description...12-25

Additional Applet Features... 12-26
A Simple Image Test... 12-28
Audio Clips.. 12-29

Playing a Clip ..12-29
A Simple Audio Test .. 12-30
Looping an Audio Clip .. 12-31

Loading an Audio Clip...12-31
Playing an Audio Clip..12-32
Stopping an Audio Clip ...12-32

A Simple Audio Looping Test .. 12-33
Mouse Input... 12-34
A Simple Mouse Test.. 12-35
Reading Parameters.. 12-36
Exercise: Creating Applets... 12-38

Preparation...12-38
Tasks ...12-38
Exercise Summary...12-39

Check Your Progress .. 12-40
Think Beyond .. 12-41

xii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI-Based Applications...13-1
Objectives ... 13-1
Relevance.. 13-2
AWT Components .. 13-3

Component Events..13-4
How to Create a Menu ... 13-5

The Help Menu..13-5
Creating a MenuBar ... 13-6
Creating a Menu... 13-7
Creating a MenuItem ... 13-8
Creating a CheckboxMenuItem ... 13-9
Controlling Visual Aspects.. 13-10

Colors..13-10
Fonts..13-12
The Toolkit Class ..13-14

Printing ... 13-15
Dual-Purpose Code... 13-17

Example ..13-18
Discussion of Dual-Purpose Code.. 13-22
Swing .. 13-23
Exercise: Building GUI-Based Applications.............................. 13-24

Preparation...13-24
Tasks ...13-24
Exercise Summary...13-25

Check Your Progress .. 13-26
Think Beyond .. 13-27

Threads...14-1
Objectives ... 14-1
Relevance.. 14-2
Threads ... 14-3

What Are Threads? ...14-3
Threads in Java Programming .. 14-4

Three Parts of a Thread ..14-4
Creating the Thread..14-6
Starting the Thread ...14-9
Thread Scheduling..14-10

Basic Control of Threads.. 14-13
Terminating a Thread...14-13
Testing a Thread..14-15
Accessing Thread Priority ...14-15
Putting Threads on Hold ...14-16

Other Ways to Create Threads.. 14-19
Selecting a Way to Create Threads.....................................14-20

xiii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Basic Threads... 14-22
Preparation...14-22
Tasks ...14-22

Using synchronized in Java Technology................................. 14-23
The Problem...14-23
The Object Lock Flag ..14-26
Releasing the Lock Flag..14-30
synchronized – Putting It Together14-31
Thread States ...14-33
Deadlock...14-34

Thread Interaction – wait and notify 14-35
Scenario ..14-35
The Problem...14-36
The Solution ...14-36

Thread Interaction... 14-37
wait and notify ...14-37
Thread States ...14-39
Monitor Model for Synchronization14-40

Putting It Together.. 14-41
Producer ...14-42
Consumer ...14-43
SyncStack Class ...14-44
Complete Code..14-48

Thread Control in Java 2 SDK ... 14-53
The suspend and resume Methods....................................14-53
The stop Method ..14-55
Proper Thread Control ...14-56

Exercise: Using Multithreaded Programming.......................... 14-59
Preparation...14-59
Tasks ...14-59
Exercise Summary...14-60

Check Your Progress .. 14-61
Think Beyond .. 14-62

Advanced I/O Streams ..15-1
Objectives ... 15-1
Relevance.. 15-2
I/O Fundamentals .. 15-3
Byte Streams .. 15-5

InputStream Methods...15-5
OutputStream Methods ..15-7

Character Streams ... 15-8
Reader Methods..15-8
Writer Methods..15-10

Node Streams... 15-11
A Reader/Writer Example .. 15-12

xiv Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Buffered Reader/Writer Example .. 15-13
I/O Stream Chaining.. 15-14
Processing Streams ... 15-15
Processing Streams as Decorators .. 15-16
Basic Byte Stream Classes .. 15-18

FileInputStream and FileOutputStream15-19
BufferedInputStream and BufferedOutputStream ...15-19
PipedInputStream and PipedOutputStream15-19
DataInputStream and DataOutputStream15-20

Basic Character Stream Classes... 15-21
InputStreamReader and InputStreamWriter15-22
Byte and Character Conversions ..15-22
Using Other Character Encoding15-22
FileReader and FileWriter ...15-23
BufferedReader and BufferedWriter15-23
StringReader and StringWriter15-23
PipedReader and PipedWriter ..15-23

URL Input Streams ... 15-24
Opening an Input Stream ..15-25

Random Access Files .. 15-26
Creating a Random Access File...15-26
Accessing Information..15-28
Appending Information...15-29

Serialization ... 15-30
Object Graphs ..15-31

Writing and Reading an Object Stream 15-32
Writing..15-32
Reading...15-33

Exercise: Getting Acquainted With I/O 15-34
Preparation...15-34
Tasks ...15-34
Exercise Summary...15-35

Check Your Progress .. 15-36
Think Beyond .. 15-37

Networking ...16-1
Objectives ... 16-1
Relevance.. 16-2
Networking.. 16-3

Sockets ..16-3
Setting up the Connection ...16-4
Addressing the Connection ...16-5
Port Numbers ..16-6
Java Networking Model...16-7

Minimal TCP/IP Server ... 16-8
Minimal TCP/IP Client.. 16-9

xv
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Socket Programming .. 16-10
Preparation...16-10
Tasks ...16-10
Exercise Summary...16-11

Check Your Progress .. 16-12
Think Beyond .. 16-13

Elements of Advanced Java Programming ..A-1
Objectives .. A-1
Introduction to Two- and Three-Tier Architectures A-2
The Three-Tier Architecture ... A-3

Three -Tier Client-Server DefinitionA-3
A Database Frontend... A-4
Introduction to the JDBC API... A-6

JDBC, An Overview...A-6
JDBC Drivers...A-7
The JDBC-ODBC Bridge ...A-7

Distributed Computing... A-8
RMI... A-9

RMI Architecture..A-10
Creating an RMI Application ...A-11

CORBA .. A-12
The Java IDL ... A-13
RMI Compared With CORBA.. A-14
The JavaBeans Component Model .. A-15

Bean Architecture...A-16
Bean Introspection ...A-18
A Sample Bean Interaction ...A-19
The Beans Development Kit (BDK).....................................A-19

JAR Files .. A-20
Check Your Progress ... A-21

JDK 1.0 GUI Event Model ... B-1
Additional Resources .. B-2
Event Handling .. B-3

Event Handling Before JDK 1.1.. B-3
Event Handling in JDK 1.1 ... B-3

JDK 1.0 Event Model Compared to Java 2 SDK Event Model... B-4
Hierarchical Model (JDK 1.0) ... B-4

Converting 1.0 Event Handling to 1.1... B-6
Making a Component a Listener ... B-10

The AWT Component Library ...C-1
Features of the AWT.. C-1
Button... C-2
Checkbox... C-3
Checkbox Group – Radio Buttons ... C-4

xvi Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Choice .. C-5
Canvas ... C-6
Label... C-8
TextField.. C-9
TextArea .. C-11
Text Components ... C-12
List .. C-13
Dialog... C-14
FileDialog .. C-16
ScrollPane.. C-18
PopupMenu .. C-19

Using the GridBagLayout ...D-1
Layout Managers ... D-2
The GridBagLayout .. D-4
The GridBagConstraints Class... D-8
Designing With GridBagLayout ... D-10

Design Steps..D-10
Example ...D-18

RELATIVE and REMAINDER.. D-22

Java Foundation Classes .. E-1
Objectives .. E-1
Additional Resources .. E-2
Swing Introduction .. E-3

Pluggable Look and Feel... E-4
Swing Architecture .. E-5
The Swing Hierarchy... E-6
Swing Components.. E-7

Basic Swing Application ... E-9
HelloSwing .. E-10
Importing Swing Packages ... E-12
Choosing the Look and Feel ... E-12
Setting up Windows .. E-13
Setting up Swing Components .. E-14
Supporting Assistive Technologies E-15

Building a Swing GUI ... E-16
The JComponent Class .. E-21

Java Native Interface .. F-1
Native Methods.. F-1
Native HelloWorld .. F-2

Defining Native Methods ... F-2
Calling Native Methods .. F-3
The javah Utility ... F-4
Coding C Functions for Native Methods F-5

Putting It Together... F-6

xvii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method F-7
Passing a Java Primitive as an Argument F-7
Accessing a Java Primitive as an Object Data Member F-8
Accessing Strings ... F-11

Summary ... F-14

UML Modeling and Java ...G-1
What Is UML?... G-1
Package Diagrams.. G-2
Class Diagrams... G-4

Class Nodes...G-4
Inheritance and Interface Implementation...........................G-6
Association and Aggregation...G-7

Object Diagrams... G-9
State Diagrams.. G-10

Transitions...G-11
Other UML Elements... G-12

Stereotypes ..G-12
Diagram Annotation..G-12

Index ...Index-1

xix
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AboutThisCourse

Course Goal

The main goal of the Java™ Programming Language course is to provide
you with the knowledge and skills necessary for object-oriented
programming of advanced Java applications and applets. In this
course, you will learn Java programming language syntax and object-
oriented concepts, as well as more sophisticated features of the Java
runtime environment, such as support for graphical user interfaces
(GUIs), multithreading, and networking. This course covers
prerequisite knowledge to prepare you for the Sun Microsystems™
Certified Java Programmer and Certified Java Developer
examinations. Please review the Web site:
http://suned.sun.com/usa/cert_test.html
for details about the exam.

✓ It is important to make the students understand that they will need to study for the SCJP
exam and that this course is not a substitute for proper studying.

✓ Use this module to get the students excited about this course.

✓ With regard to the overheads: To avoid confusion among the students, it is very important
to tell them that the page numbers on the overheads have no relation to the page numbers
in their course materials. They should use the title of each overhead as a reference.

✓ The strategy provided by the “About This Course” is to introduce students to the course
before they introduce themselves to you and one another. By familiarizing them with the
content of the course first, their introductions will have more meaning in relation to the
course prerequisites and objectives.

✓ Use this introduction to the course to determine how well students are equipped with the
prerequisite knowledge and skills.

xx Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Overview

This course first discusses the Java runtime environment and the
syntax of the Java programming language. The course then covers
object-oriented concepts as they apply to the language. As the course
progresses, advanced features of the Java platform are discussed.

The audience for this course includes people who are familiar with
implementing elementary programming concepts using the Java
programming language or other languages. This is the follow-up
course to Java Programming for Non-Programmers (SL-110).

While the Java programming language is operating system
independent, the GUI that it produces can be dependent on the
operating system on which the code is executed. The course material
code examples were run in the Solaris™ Operating Environment and
in the Microsoft Windows operating environment; therefore, the
graphics in this guide have both a Motif and a Microsoft Windows
GUI. The content of this course is applicable to all Java operating
system ports.

About This Course xxi
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Map

The following course map enables you to see what you have
accomplished and where you are going in reference to the course goal.

The Java Programming Language Basics

More Object-Oriented Programming

Building Applications

Developing Graphical User Interfaces

Advanced Java Programming

Getting Started
Object-Oriented

Programming

Identifiers,
Keywords, and

Types

Arrays

Inheritance
Advanced

Class Features

Text-Based

Applications
Exceptions

Building Java

GUIs

GUI Event

Handling

Introduction to

Java Applets

GUI-Based

Applications

Advanced

I/O Streams
Threads Networking

Expressions

and Flow Control

xxii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Module-by-Module Overview

● Module 1 – "Getting Started"

This module provides a general overview of the Java
programming language and its main features, and introduces Java
applications. This module also reviews the concepts of classes and
packages and some of the more commonly used Java packages.

● Module 2 – "Object-Oriented Programming"

This module introduces basic object-oriented programming
concepts and describes their implementation using the Java
language.

About This Course xxiii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Module-by-Module Overview

● Module 3 – "Identifiers, Keywords, and Types"

The Java programming language contains many programming
constructs similar to the C language. This module provides a
general overview of the constructs available and the general
syntax required for each construct. It also introduces the basic
object-oriented approach to data association using aggregate
data types.

● Module 4 – "Expressions and Flow Control"

This module looks at expressions, including operators and the
syntax of Java program control.

● Module 5 – "Arrays"

This module describes how Java arrays are declared, created,
initialized, and copied.

● Module 6 – "Inheritance"

This module takes the introduction to Java object concepts
described in Module 2 to the next level, including a discussion on
subclassing, overloading, and overriding.

● Module 7 – "Advanced Class Features"

This module completes the Java object-oriented programming
model by discussing the concepts of abstract classes, interfaces,
and inner classes.

● Module 8 – "Exceptions"

Exceptions provide the Java programmer with a mechanism for
trapping errors at runtime. This module explores both predefined
and user-defined exceptions.

● Module 9 – "Text-Based Applications"

This module introduces topics that are useful in implementing
large, text-based applications; such as console and file I/O,
collections and sorting algorithms, and the use of two Java 2 SDK
tools: javadoc and jar .

xxiv Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Module-by-Module Overview

● Module 10 – "Building Java GUIs"

All graphical user interfaces in the Java programming language
are built on the concept of frames and panels. This module
introduces layout management and containers.

● Module 11 – "GUI Event Handling"

Creating a layout of GUI components in a frame is not enough.
Code must be written to handle the events that occur, such as
clicking a button or typing a character. This module demonstrates
how to write GUI event handlers.

● Module 12 – "Introduction to Java Applets"

This module demonstrates how to program Java technology
applets; including the use of images and audio clips.

About This Course xxv
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Module-by-Module Overview

● Module 13 – "GUI-Based Applications"

This module discusses a variety of GUI elements: menus, color
and font control, printing, and the difference between applet and
application development.

● Module 14 – "Threads"

Threads are a complex topic; this module explains threading as it
relates to the Java programming language and introduces a
straightforward example of thread communication and
synchronization.

● Module 15 – "Advanced I/O Streams"

This module explains the classes available for reading and writing
both data and text files, and introduces object serialization.

● Module 16 – "Networking"

This module introduces the Java network programming package
and demonstrates a Transmission Control Protocol/Internet
Protocol (TCP/IP) client-server model.

xxvi Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Objectives

Upon completion of this course, you should be able to:

● Describe key language features

● Compile and run a Java application

● Understand and use the online hypertext Java technology
documentation

● Describe language syntactic elements and constructs

● Understand the object-oriented paradigm

● Use object-oriented features of Java

● Understand and use exceptions

● Understand and use the Collections API

● Read and write to files

● Develop a graphical user interface

● Describe the Java technology platform’s Abstract Window Toolkit

● Develop a program to take input from a GUI

● Understand event handling

● Develop Java applets

● Understand and use the java.io package

● Understand the basics of multithreading

● Develop multithreaded Java applications and applets

● Develop Java client and server programs using TCP/IP

✓ Ask the students how many signed up for this course because of the information in the
Sun Educational Services course catalog, what their knowledge and expectations of the
objectives stated there are, and use this information as a tool to manage your time in
covering the material in this course.

About This Course xxvii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Skills Gained by Module

The skills for Java™ Programming Language are shown in column 1 of
the matrix below. The black boxes indicate the main coverage for a
topic; the gray boxes indicate the topic is briefly discussed.

✓ Refer students to this matrix as you progress through the course to show them the
progress they are making in learning the skills advertised for this course.

 Module

Skills Gained 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Describe key language features

Compile and run a Java application

Understand and use the online hypertext
Java technology documentation

Describe language syntactic elements and
constructs

Understand the object-oriented paradigm

Use object-oriented features of Java

Understand and use exceptions

Understand and use the Collections API

Read and write to files

Develop a GUI

Describe the Java technology platform’s
Abstract Window Toolkit

Create a program to take input from a
graphical user interface

Understand event handling

Develop Java applets

Understand and use the java.io package

Understand the basics of multithreading

Develop multithreaded Java applications
and applets

Develop Java client and server programs
using TCP/IP

xxviii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Guidelines for Module Pacing

The table below provides a rough estimate of pacing for this course.

Module
Day
1

Day
2

Day
3

Day
4

Day
5

About This Course A.M.

Module 1 – "Getting Started" A.M.

Module 2 – "Object-Oriented Programming" P.M.

Module 3 – "Identifiers, Keywords, and Types" P.M.

Module 4 – "Expressions and Flow Control" A.M.

Module 5 – "Arrays" A.M.

Module 6 – "Inheritance" P.M.

Module 7 – "Advanced Class Features" A.M.

Module 8 – "Exceptions" A.M.

Module 9 – "Text-Based Applications" P.M.

Module 10 – "Building Java GUIs" A.M.

Module 11 – "GUI Event Handling" A.M.

Module 12 – "Introduction to Java Applets" P.M.

Module 13 – "GUI-Based Applications" P.M.

Module 14 – "Threads" A.M.

Module 15 – "Advanced I/O Streams" P.M.

Module 16 – "Networking" P.M.

About This Course xxix
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Topics Not Covered

This course does not cover the topics shown on the above overhead.
Many of the topics listed on the overhead are covered in other courses
offered by Sun Educational Services:

● Object-oriented concepts – Covered in OO-100: Object-Oriented
Technology and Concepts

● Object-oriented design and analysis – Covered in OO-120: Object-
Oriented Design and Analysis

● General programming concepts – Covered in SL-110: Java
Programming for Non-Programmers

xxx Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

How Prepared Are You?

Before attending this course, you should have completed:

● SL-110: Java Programming For Non-Programmers

or have:

● Created compiled programs with C or C++

● Created and edited text files using vi or the OpenWindows™ text
editor

● Used a World Wide Web (WWW) browser, such as Netscape
Navigator™

✓ If any students indicate they cannot do these requirements, meet with them at the first
break to decide how to proceed with the class. Do they want to take the class at a later
date? Is there some way to get the extra help needed during the week?

✓ It might be appropriate here to recommend resources from the Sun Educational Services
catalog that provide training for topics not covered in this course.

About This Course xxxi
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Introductions

Now that you have been introduced to the course, introduce yourself
to each other and to the instructor, addressing the items shown on the
above overhead.

xxxii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

How to Use Course Materials

To enable you to succeed in this course, these course materials employ
a learning model that is composed of the following components:

● Course Map – This preface contains an overview of the content so
you can see how the modules fit into the overall course goal.

● Objectives - What you should be able to accomplish after
completing this module is listed here.

● Relevance – The Relevance section for each module provides
scenarios or questions that introduce you to the information
contained in the module and encourage you to think about how
the module content relates to your interest in Java applications
programming.

● Overhead Image – Reduced overhead images for the course are
included in the course materials to help you easily follow where
the instructor is at any point in time. Overheads do not appear on
every page.

About This Course xxxiii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

How to Use Course Materials

● Lecture – The instructor will present information specific to the
topic of the module. This information will help you learn the
knowledge and skills necessary to succeed with the exercises.

● Exercise – Lab exercises will give you the opportunity to practice
your skills and apply the concepts presented in the lecture.

● Check Your Progress – Module objectives are restated, sometimes
in question format, so that before moving on to the next module
you are sure that you can accomplish the objectives of the current
module.

● Think Beyond – Thought-provoking questions are posed to help
you apply the content of the module or predict the content in the
next module.

xxxiv Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Icons and Typographical Conventions

The following icons and typographical conventions are used in this
course to represent various training elements and alternative learning
resources.

Course Icons

Additional resources – Indicates additional reference materials are
available.

Discussion – Indicates a small-group or class discussion on the current
topic is recommended at this time.

Exercise objective – Indicates the objective for the lab exercises that
follow. The exercises are appropriate for the material being discussed.

Note – Additional important, reinforcing, interesting or special
information.

!
Caution – A potential hazard to data or machinery.

About This Course xxxv
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Typographical Conventions

Courier is used for the names of commands, files, and directories, as
well as on-screen computer output. For example:

Use ls -al to list all files.
system% You have mail.

It is also used to represent parts of the Java™ programming language
such as class names, methods, and keywords. For example:

The getServletInfo method is used to...
The java.awt.Dialog class contains Dialog (Frame parent)

Courier bold is used for characters and numbers that you type. For
example:

system% su
Password:

It is also used for each code line that will be referenced in text.
For example:

while ((s = input.readLine()) != null) {
 // process input string
}

Courier italic is used for variables and command-line
placeholders that are replaced with a real name or value. For example:

To delete a file, type rm filename .

Palatino italics is used for book titles, new words or terms, or words
that are emphasized. For example:

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xxxvi Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Java programming language examples use the following
additional conventions:

● Method names are not followed with parentheses unless a formal
or actual parameter list is shown. For example:

"The doIT method..." refers to any method called doIt.

"The doIt() method..." refers to a method called doIt which takes no
arguments.

● Line breaks occur only where there are separations (commas),
conjunctions (operators), or white space in the code. Broken code
is indented four spaces under the starting code.

● If a command is different on the Solaris Operating Environment
and Microsoft Windows platforms, both commands are shown.
For example:

On Solaris

cd server_root/bin

On Microsoft Windows

cd server_root\bin

About This Course xxxvii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Notes to the Instructor

Philosophy

The Java Programming Language course has been created to allow for
interactions between the instructor and the student as well as between
the students themselves. In an effort to enable you to accomplish the
course objectives easily, and in the time frame given, a series of tools
has been developed and support materials created for your
discretionary use.

A consistent structure has been used throughout this course. This
structure is outlined in the “Course Goal” section. The suggested flow
for each module is:

1. Module objectives
2. Context questions/module rationale
3. Lecture information with appropriate overheads
4. Lab exercises
5. Discussion: either as whole class or in small groups

To allow the instructor flexibility and give time for meaningful
discussions during the lectures and the small-group discussions, a
timing table is included in the “Course Tools” section.

About the Labs

Almost every module in this course has a set of exercises. Each
exercise is marked as either a Level 1, Level 2, or Level 3 lab. The Level
1 labs are designed to reinforce the material presented in the module.
Level 2 labs extend the material presented in the module, providing
additional practice. Level 3 labs require some additional research to
complete—this might include external materials like books on the Java
programming language, or material that is available in the Java API
documentation.

Every module will have a Level 2 or Level 3 lab or both.

xxxviii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Tools

To enable you to follow this structure, the following supplementary
materials are provided with this course:

● Relevance

These questions or scenarios set the context of the module. It is
suggested that the instructor ask these questions and discuss the
answers. The answers are provided only in the instructor’s guide.

● Course map

The course map allows the students to get a visual picture of the
course. It also helps students know where they have been, where
they are, and where they are going. The course map is presented
in the “About This Course” in the student’s guide.

● Lecture overheads

Overheads for the course are provided in two formats:

The paper-based format can be copied onto standard
transparencies and used on a standard overhead projector. These
overheads are also provided in the student’s guide.

The Web browser–based format is in HTML and can be projected
using a projection system which displays from a workstation. This
format gives the instructor the ability to allow the students to view
the overhead information on individual workstations. It also
allows better random access to the overheads.

About This Course xxxix
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Tools (Continued)

● Small-group discussion

After the lab exercises, it is a good idea to debrief the students.
Gather them back into the classroom and have them discuss their
discoveries, problems, and issues in programming the solution to
the problem in small groups of four or five, one-on-one, or one-on-
many.

● General timing recommendations

Each module contains a “Relevance” section. This section may
present a scenario relating to the content presented in the module,
or it may present questions that stimulate students to think about
the content that will be presented. Engage the students in relating
experiences or posing possible answers to the questions. Spend no
more that 10–15 minutes on this section

xl Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

.

● Module self-check

Each module contains a checklist for students in the “Check Your
Progress” section. Give them a little time to read through this
checklist before going on to the next lecture. Ask them to see you
for items they do not feel comfortable checking off.

Module Day
1

Day
2

Day
3

Day
4

Day
5

About This Course A.M.

Module 1 – Getting Started A.M.

Module 2 – Object-Oriented Programming P.M.

Module 3 – Identifiers, Keywords, and Types P.M.

Module 4 – Expressions and Flow Control A.M.

Module 5 – Arrays A.M.

Module 6 – Inheritance P.M.

Module 7 – Advanced Class Features A.M.

Module 8 – Exceptions A.M.

Module 9 – Text-Based Applications P.M.

Module 10 – Building Java GUIs A.M.

Module 11 – GUI Event Handling A.M.

Module 12 – Introduction to Java Applets P.M.

Module 13 – GUI-Based Applications P.M.

Module 14 – Threads A.M.

Module 15 – Advanced I/O Streams P.M.

Module 16 – Networking P.M.

About This Course xli
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Instructor Setup Notes

Purpose of This Guide

This guide provides general information about setting up the
classroom. Refer to the SL275.D.setup.txt file in the SL275_IN
directory for specific information about how to set up this course.

Projection System and Workstation

If you have a projection system for projecting HTML slides and are
planning to use the HTML slides, you need to do the following:

● Install the HTML overheads on the workstation connected to the
projection system so you can display them with a browser during
lecture.

To install the HTML overheads on the machine connected to your
overhead projection system, copy the HTMLand images subdirectories
provided in the SL275_OHdirectory to any directory on the overhead
workstation machine.

Display the overheads in the browser by choosing Open ➤ File and
typing the following in the Selection field of the pop-up window:

/SL275_revX_XXXX/SL275_OH/HTML/OH.Title.doc.html

● Set up an overhead-projection system that can project instructor
workstation screens.

Note – This document does not describe the steps necessary to set up
an overhead projection system because it is unknown what will be
available in each training center. This setup is the responsibility of
each training center.

xlii Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Course Files

All of the course files for this course are available from the
education.central server. You can use ftp or the
education.central Web site,
http://education.central/Released.html , to download the files
from education.central. Either of these methods requires you to
know the user ID and password for FTP access. See your manager for
these if you have not done this before.

Course Components

This course consists of the following components:

● Instructor guide

The SL275_IG directory contains the FrameMaker files for the
instructor’s guide (student’s guide with instructor notes). The ART
directory is required for printing this guide.

● Student guide

The SL275_SG directory contains the FrameMaker files for the
student’s guide. The ART directory is required for printing this
guide.

● Art

The SL275_ART directory contains the supporting images and
artwork for the student’s and instructor’s guides. This directory is
required for the printing of the student’s and instructor’s guides
and should be located in the same directory as SL275_IG and
SL275_SG.

● Instructor notes

The SL275_IN directory contains the text file SL275.D.setup.txt .

About This Course xliii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

● Overheads

The SL275_OHdirectory contains the instructor overheads. There
are both HTML and FrameMaker versions of the overheads.

● Lab files

The SL275_LF directory contains the lab files for this course.

1-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GettingStarted 1

Objectives

Upon completion of this module, you should be able to:

● Describe key features of Java technology

● Define the terms class and application

● Write, compile, and run a simple Java application

● Describe the Java virtual machine’s (JVM™) function

● Describe how garbage collection works

● List the three tasks performed by the Java platform that handle
code security

This module provides a general overview of Java technology including
the Java virtual machine, garbage collection, and security features.

1

1-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● Is the Java programming language a complete language or is it just
useful for writing programs for the Web?

✓ There might still be some attitudes that the Java programming language is for Web
programs. There are certain features (such as better security) that make this language
ideal for the Web, but it is a complete object-oriented programming language useful for
mainstream applications as well.

● Why is another programming language needed?

● How does the Java technology platform improve on other
language platforms?

✓ The Java platform was written with security in mind from the inception of the language
thus security issues are at the core of the platform. Other languages address security
issues later in the development cycle, and might still have security leaks.

✓ Other issues you might discuss are platform-independence and ease of use. The Java
programming language is easier to use than other programming languages (such as C or
C++) because it has automatic garbage collection, stronger typing of objects and
variables, and removal of problem areas such as pointers. You might want to use this
question as an introduction to what will be discussed in this module.

1

Getting Started 1-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Additional Resources

Additional resources – The following references can provide
additional details on the topics discussed in this module:

● Gosling, Jay, and Steele. The Java Language Specification. Addison-
Wesley. 1996.
[Also online at: http://java.sun.com/docs/books/jls/]

● Lindholm and Yellin. The Java Virtual Machine Specification.
Addison-Wesley. 1997.

● Yellin, Frank. Low-Level Security in Java, white paper. [Online].
Available: http://www.javasoft.com/sfaq/verifier.html.

1

1-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is the Java Technology?

Java technology is:

● A programming language

● A development environment

● An application environment

● A deployment environment

The syntax of the Java programming language is similar to C++ syntax
and the semantics are similar to SmallTalk semantics. You can use the
Java programming language to create all kinds of applications that you
could create using any conventional programming language.

The Java programming language is usually mentioned in the context
of the World Wide Web (WWW) and browsers that are capable of
running programs called applets. Applets are programs written in the
Java programming language that reside on WWW servers, are
downloaded by a browser to a client’s system, and are run by that
browser. Applets are usually small in size to minimize download time
and are invoked by a hypertext markup language (HTML) Web page.

Java applications are standalone programs that do not require a Web
browser to execute. They are typically general-purpose programs that
run on any machine where the Java runtime environment (JRE) is
installed.

As a development environment, Java technology provides the
programmer with a large suite of tools: a compiler, an interpreter, a
documentation generator, a class file packaging tool, and so on.

There are two main "deployment environments." First, the JRE
supplied by the Java 2 SDK (Software Development Kit) contains the
complete set of class files for all of the Java packages, which includes
basic language classes, GUI component classes, an advanced
Collections API, and so. The other main deployment environment is
on your Web browser. Most commercial browsers supply a Java
interpreter and runtime environment.

1

Getting Started 1-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is the Java Technology?

Primary Goals of the Java Technology

Java technology provides the following:

● A language that is easy to program because it:

▼ Eliminates the pitfalls of other languages, such as pointer
arithmetic and memory management that affect code
robustness

▼ Is object-oriented to help the programmer visualize the
program in real-life terms

▼ Provides a means to make code as streamlined and clear as
possible

1

1-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is the Java Technology?

Primary Goals of the Java Technology (Continued)

● An interpreted environment resulting in the following two
benefits:

▼ Speed of development – Reduces the compile-link-load-test
cycle

▼ Code portability – Allows user code to be written once and
run on multiple operating systems (on any certified JVM)

● A way for programs to run more than one thread of activity

● A means to change programs dynamically during their runtime
life by allowing them to download code modules

● A means of checking code modules that are loaded to ensure
security

1

Getting Started 1-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is the Java Technology?

Primary Goals of the Java Technology (Continued)

The Java technology architecture uses the following features to fulfill
the previously listed goals:

● The Java virtual machine

● Garbage collection

● Code security

These topics will be covered in more detail in the section "Java -
Behind the Scenes" but first let’s take a look at a simple Java
application and applet.

1

1-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Like any other programming language, the Java programming
language is used to create applications. The following code shows a
simple Java application that prints a greeting to the world.

TestGreeting.java

1 //
2 // Sample "Hello World" application
3 //
4 public class TestGreeting {
5 public static void main(String[] args) {
6 Greeting hello = new Greeting("Hello");
7 hello.greet("World");
8 }
9 }

Greeting.java

1 // The Greeting class declaration.
2 public class Greeting {
3 private String salutation;
4
5 Greeting(String s) {
6 salutation = s;
7 }
8
9 public void greet(String whom) {
10 System.out.println(salutation + " " + whom);
11 }
12 }

✓ The following pages describe this program line by line.

1

Getting Started 1-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

TestGreeting Described

Lines 1–3

1 //
2 // Sample "Hello World" application
3 //

Lines 1–3 in the program are comment lines.

Line 4

4 public class TestGreeting {

Line 4 declares the class name as TestGreeting . A class name
specified in a source file creates a classname. class file when the
source file is being compiled. If you specify no target directory for the
compiler to use, this class file is in the same directory as the source
code. In this case, the compiler creates a file called
TestGreeting.class. It contains the compiled code for the public
class TestGreeting.

Line 5

5 public static void main (String args[]) {

Line 5 is where the execution of the program starts. The Java
technology interpreter must find this defined exactly as given or it will
refuse to run the program.

Other programming languages, notably C and C++, also use the
main() declaration as the starting point for execution. The various
parts of this declaration are covered later in this course.

If the program is given any arguments on its command line, these are
passed into the main() method, in an array of String called args . In
this example, no arguments are used.

1

1-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

TestGreeting Described (Continued)

Line 5 (Continued)

Let’s look at each element of this line in more detail:

● public – The method main() can be accessed by anything,
including the Java technology interpreter.

● static – This keyword tells the compiler that the main() method
is usable in the context of the class TestGreeting . No instance of
the class is needed to execute static methods.

✓ Static members are loaded first and are immediately accessible at runtime.

✓ As of JDK1.2, you are not allowed to override a static method. Therefore, main is visible
to the Java runtime environment only if it is defined correctly.

● void – This keyword indicates that the method main() does not
return any value. This is important because the Java programming
language performs careful type checking to confirm that the
methods called return the types with which they were declared.

● String args[] – This declares the single parameter to the main
method, args , and has the type of a String array. When this
method is called, the args parameter contains the arguments
typed on the command line following the class name. For
example:

java TestGreeting args[0] args[1] . . .

✓ The Java programming language does not pass the name of the class as an argument to a
program.

1

Getting Started 1-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

TestGreeting Described (Continued)

Line 6

6 Greeting hello = new Greeting("Hello");

Line 6 illustrates the creation of an object, referred to by the hello
variable. The "new Greeting " syntax tells the Java technology
interpreter to construct a new object of the class Greeting . The
implementation of this constructor is shown on lines 5-7 of the
Greeting.java file.

Lines 7

7 hello.greet("World");

Lines 7 demonstrates an object method call. This call tells the hello
object to greet the world. The implementation of this method is
shown on lines 9-11 of the Greeting.java file.

Lines 8-9

8 }
9 }

Lines 8-9 of the program, the two braces, close the method main() and
the class TestGreeting , respectively.

1

1-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Greeting Described

Lines 1-2

1 // The Greeting class declaration.
2 public class Greeting {

Line 2 declares the Greeting class.

Line 3

3 private String salutation;

Line 3 declares an attribute, salutation , of the Greeting class. This
attribute is declared as private to hide it from the TestGreeting
program. The data type of this attribute is String , a sequence of
characters.

Lines 4-7

4
5 public Greeting(String s) {
6 salutation = s;
7 }

Lines 5-7 of the program declare a constructor for this class. This code
is called when a new Greeting object is created, as was done on line 6
of the TestGreeting.java file. It takes a single String parameter,
which is the salutation for the new greeting. Line 6 initializes the
salutation attribute to that value.

1

Getting Started 1-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Greeting Described (Continued)

Lines 8-11

8
9 public void greet(String whom) {
10 System.out.println(salutation + " " + whom);
11 }

Lines 9-11 demonstrates the declaration of a method. This method is
declared public , making it accessible to the TestGreeting program.
It does not return a value, so void is used as the return type. The
greet method takes one parameter, whom. This parameter is of type:
String .

✓ The static variable out is defined in the System class to be of type PrintStream ;
PrintStream is a class defined in the java.io package, and the source file is called
PrintStream.java . This is where the println method is declared.

The purpose of the greet method is to send a message to standard
output stream. The message is a string that is concatenated from the
value of the salutation variable, a space character, and the value of
the whomparameter. For example, if salutation is ”Hello ” and whom
is ”World ”, then the message is “Hello World ”. The println()
method is used to write this message to the standard output stream.

Line 12

12 }

Line 12 closes the class declaration for Greeting .

1

1-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Compiling and Running TestGreeting

Once you have created the TestGreeting.java source file, compile it
with the following line:

javac TestGreeting.java

If the compiler does not return any messages, the new file
TestGreeting.class is stored in the same directory as the source file,
unless specified otherwise. Also notice that the Greeting.java file
has been compiled into Greeting.class . This is done automatically
by the compiler, because the TestGreeting class uses the Greet class.

If you have a problem compiling the application, check the
troubleshooting messages on page 1-16.

1

Getting Started 1-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Compiling and Running TestGreeting (Continued)

To run your TestGreeting application, use the Java interpreter. The
executables for the Java technology tools (javac , java , javadoc , and
so on) are located in the bin directory.

java TestGreeting
Hello World

Note – The PATHenvironment variable must be set to find java and
javac ; make sure it includes java_root /bin (where java_root
represents the directory root where Java is installed).

✓ As of JDK 1.1, PATH is all that is required.

1

1-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Troubleshooting the Compilation

Compile-Time Errors

The following are common errors seen at compile time:

● javac: Command not found

The PATHvariable is not set properly to include the javac
compiler. The javac compiler is located in the bin directory below
the installed JDK™ directory.

● Greeting.java:10: Method printl(java.lang.String) not
found in class java.io.PrintStream.
System.out.printl(salutation + “ “ + whom);

The method name println is typed incorrectly.

● Class and File Naming

If the .java file contains a public class, then it must have the
same file name as that class. For example, the definition of the
class in the previous example is:

public class TestGreeting

The name of the source file must therefore be:
TestGreeting.java . If you named the file TestGreet.java , then
you would get the error message:

TestGreet.java:4: Public class TestGreeting must be
defined in a file called "TestGreeting.java".

● Class count

Only one top level, non-static class can be declared public in each
source file, and it must have the same name as the source file. If
you have more than one public class, then you will get the same
message as above for every public class in the file that does not
have the same name as the file.

1

Getting Started 1-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Basic Java Application

Troubleshooting the Compilation

Runtime Errors

Some of the errors generated when typing java TestGreeting are:

● Can't find class TestGreeting

Generally, this means that the class name specified on the
command line was spelled differently than the filename. class
file. The Java programming language is case sensitive.

For example,

public class TestGreet {

creates a TestGreet.class , which is not the class name
(TestGreeting.class) the compiler expected.

● Exception in thread "main"
java.lang.NoSuchMethodError: main

This means that the class you told the interpreter to execute does
not have a static main method. There might be a main method, but
it might not be declared with the static keyword or it might have
the wrong parameters declared, such as:

public static void main(String args) {

In this example, args is a single string not an array of strings.

public static void main() {

In this example, the coder forgot to include any parameter list.

1

1-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

The Java Runtime Environment

Figure 1-1 illustrates how Java technology programs can be compiled
and then run on the Java virtual machine (JVM). There are many
implementations of the JVM on different hardware and operating
system platforms.

Figure 1-1 Java Technology Runtime Environment

✓ This diagram is meant to show how code is compiled into class files (using javac) and
then executed on a JVM (using java) and how the JVM can be implemented on multiple
platforms. It is a bit complicated by our TestGreeting example because there are two files,
but this gives you the opportunity to explain how the JVM will load classes as needed.

✓ Show other platforms: JavaChip™, in a browser, PalmPilot (KVM), and so on.

C
om

pi
le

TestGreeting .java

TestGreeting .class

R
un

tim
e

Greeting .class

Greeting .java

JVM

Unix® DOS JavaOS™

JVMJVM

javac

java

also compiles

also loads

can run on multiple platforms

1

Getting Started 1-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

The Java Virtual Machine

The Java Virtual Machine Specification defines the Java virtual machine
(JVM) as:

An imaginary machine that is implemented by emulating it in software
on a real machine. Code for the Java virtual machine is stored in .class
files, each of which contains code for at most one public class.

The Java Virtual Machine Specification provides the hardware platform
specifications to which all Java technology code is compiled. This
specification enables Java software to be platform independent
because the compilation is done for a generic machine known as the
Java virtual machine (JVM). You can emulate this “generic machine” in
software to run on various existing computer systems or implemented
in hardware.

1

1-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

The Java Virtual Machine (Continued)

The compiler takes the Java application source code and generates
bytecodes. Bytecodes are machine code instructions for the JVM. Every
Java interpreter, regardless of whether it is a Java technology
development tool or a Web browser that can run applets, has an
implementation of the JVM.

The JVM specification provides concrete definitions for the
implementation of the following: an instruction set (equivalent to that
of a central processing unit [CPU]), a register set, the class file format,
a runtime stack, a garbage-collected heap, and a memory area.

1

Getting Started 1-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

The Java Virtual Machine (Continued)

The code format of the JVM consists of compact and efficient
bytecodes. Programs represented by JVM bytecodes must maintain
proper type discipline. The majority of type checking is done at
compile time.

Any compliant Java technology interpreter must be able to run any
program with class files that conform to the class file format specified
in The Java Virtual Machine Specification.

1

1-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Garbage Collection

Many programming languages allow the dynamic allocation of
memory at runtime. The process of allocating memory varies based on
the syntax of the language, but always involves returning a pointer to
the starting address of a memory block.

Once the allocated memory is no longer required (the pointer that
references the memory has gone out of scope), the program or runtime
environment should deallocate the memory.

In C, C++, and other languages, the program developer is responsible
for deallocating the memory. This can be a difficult exercise at times,
because it is not always known in advance when memory should be
released. Programs that do not deallocate memory can eventually
crash when there is no memory left on the system to allocate. These
programs are said to have memory leaks.

1

Getting Started 1-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Garbage Collection (Continued)

The Java programming language removes the responsibility for
allocating and deallocating memory from the programmer. It provides
a system-level thread that tracks each memory allocation. During idle
cycles in the JVM, the garbage collection thread checks for and frees
any memory that can be freed.

Garbage collection happens automatically during the lifetime of a Java
technology program, eliminating the need to allocate and deallocate
memory and avoiding memory leaks. However, garbage collection
schemes can vary dramatically across JVM implementations.

1

1-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Code Security

Overview

Figure 1-2 illustrates the Java technology runtime environment (JRE)
and how it enforces code security.

Figure 1-2 Operation of the JRE

Java software source files are “compiled” in the sense that they are
converted into a set of bytecodes from the text format in which
programmers write them. The bytecodes are stored in .class files.

At runtime, the bytecodes that make up a Java software program are
loaded, checked, and run in an interpreter. In the case of applets, the
bytecodes can be downloaded and then interpreted by the JVM built
into the browser. The interpreter has two functions: It executes
bytecodes and makes the appropriate calls to the underlying
hardware.

Compile

TestGreeting .java

TestGreeting .class

Network

Class
loader

Byte code
verifier

Interpreter

Runtime

Hardware

Runtime

javac

java

1

Getting Started 1-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Code Security

Overview (Continued)

In some Java technology runtime environments, a portion of the
verified bytecode is compiled to native machine code and executed
directly on the hardware platform. This allows Java software code to
run close to the speed of C or C++ with a small delay at loadtime to
allow compilation to the native machine code.

Figure 1-3 Operation of the JRE With a Just-In-Time Compiler

Note – Sun Microsystems has enhanced the Java virtual machine by
adding new performance-enabling technologies. One of these
technologies is called the Java HotSpot™ virtual machine, and has the
potential to enable the Java programming language to run as fast as
compiled C++.

Compile

TestGreeting .java

TestGreeting .class

Network

Class
loader

Byte code
verifier

Interpreter

Runtime

Hardware

Runtime

javac

java

code
generator

JIT

1

1-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Code Security

The Java Runtime Environment

A Java technology runtime environment runs code compiled for a JVM
and performs three main tasks:

● Loads code – Performed by the class loader

● Verifies code – Performed by the bytecode verifier

● Executes code – Performed by the runtime interpreter

1

Getting Started 1-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Class Loader

The class loader loads all classes needed for the execution of a
program. The class loader adds security by separating the namespaces
for the classes of the local file system from those imported from
network sources. This limits any Trojan horse applications because
local classes are always loaded first.

✓ Classes that are imported from across the network are loaded into a private namespace
associated with the origin. When a class from the private namespace accesses another
class, the built-in (local system) classes are checked first, then those in the namespace of
the referencing class. This prevents a class from spoofing (creating a hoax of) a built-in
class.

Once all of the classes have been loaded, the memory layout of the
executable file is determined. At this point specific memory addresses
are assigned to symbolic references and the lookup table is created.
Because memory layout occurs at runtime, the Java technology
interpreter adds protection against unauthorized access into the
restricted areas of code.

1

1-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Code Security (Continued)

Bytecode Verifier

Java software code passes several tests before actually running on your
machine. The JVM puts the code through a bytecode verifier that tests
the format of code fragments and checks code fragments for illegal
code—code that forges pointers, violates access rights on objects, or
attempts to change object type.

Note – All class files imported across the network pass through the
bytecode verifier.

1

Getting Started 1-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java - Behind the Scenes

Code Security (Continued)

Verification Process

The bytecode verifier makes four passes on the code in a program. It
ensures that the code adheres to the JVM specifications and does not
violate system integrity. If the verifier completes all four passes
without returning an error message, then the following is ensured:

● The classes adhere to the class file format of the JVM specification.

● There are no access restriction violations.

● The code causes no operand stack overflows or underflows.

● The types of parameters for all operational codes are known to
always be correct.

● No illegal data conversions, such as converting integers to object
references, have occurred.

1

1-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Performing Basic Tasks

Exercise objective – You will compile and debug several test
programs. You will also write, compile, and run a simple Java
program.

Preparation

An understanding of the concepts and terminology presented in this
module is critical to being able to troubleshoot several compilation and
runtime errors.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod01). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Explore Java Errors (Level 1)

In this exercise you will solve compilation and runtime errors by fixing
several example Java technology programs.

Exercise 2: Write, Compile, and Run TestGreeting (Level 2)

In this exercise you will write, compile, and run the TestGreeting
program from "A Basic Java Application" on page 1-8.

1

Getting Started 1-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you
can:

❑ Describe key features of Java technology

❑ Define the terms class and application

❑ Write, compile, and run a simple Java application

❑ Describe the JVM function

❑ Describe how garbage collection works

❑ List the three tasks performed by the Java platform that handle
code security

1

1-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

How can you benefit from using this programming language in your
work environment?

2-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Object-OrientedProgramming 2

Objectives

Upon completion of this module, you should be able to:

● Define modeling concepts: abstraction, encapsulation, and packages

● Discuss why Java technology application code is reusable

● Define class, member, attribute, method, constructor, and package

● Use the access modifiers private and public as appropriate for
the guidelines of encapsulation

● Invoke a method on a particular object

● In a Java technology program, identify the following:

▼ The package statement

▼ The import statements

▼ Classes, methods, and attributes

▼ Constructors

● Use the Java technology application programming interface (API)
online documentation

This module is the first of three modules that describe the object-
oriented paradigm and the object-oriented features of the Java
programming language.

2

2-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● What is your understanding of software analysis and design?

● What is your understanding of design and code reuse?

✓ There are many forms and levels of abstraction. What the students should understand is
the importance of functional and object abstraction (and inheritance). In addition, knowing
about design patterns is a plus.

● What features does the Java programming language possess which
make it an object-oriented language?

● What does the term object-oriented really mean?

✓ This module is the first of three that discusses the object-oriented features of the
language. The object-oriented features help make development and maintenance of a Java
software program an easier task than if the program were written in another language. For
example, data elements in the form of objects are easier to conceptualize because they
model real-world objects better; this helps to cut a project’s development time. Other
object-oriented ideas, such as data hiding help, make future efforts (maintenance,
upgrading, and so on) a more efficient and reliable procedure.

2

Object-Oriented Programming 2-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is Object-Oriented Programming?

Software engineering is a difficult and often unruly discipline. For the
past half century, computer scientists, software engineers, and system
architects have sought to make creating software systems easier by
providing reusable code. At first they created computer languages to
conceal the complexity of the machine language and added callable
operating system procedures to handle common operations, such as
opening, reading, and writing to files.

Other developers grouped collections of common functions and
procedures into libraries for anything from calculating structural loads
for engineering (NASTRAN), writing character and byte streams
between computers on a network (TCP/IP), accessing data through an
indexed, sequential file system (ISAM), and creating windows,
graphics and other GUI widgets on a bit-mapped monitor
(X-Windows and Open Look®).

2

2-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What is Object-Oriented Programming?

Many of these libraries manipulated data in the form of "open" record
data-structures, such as the C language struct . The main problem
with record structures is that the library designer could not hide the
implementation of the data used in the procedures. This made it
difficult to modify the implementation of the library without affecting
the client code, because that code was often tied to the particular
details of the data structures.

By the late 1980’s, Object-Oriented Programming (OOP) became
popular with C++. One of the greatest advantages of OOP was the
ability to hide certain aspects of a library’s implementation so that
updates would not affect client code (assuming the interfaces had not
changed). The other important advantage was that procedures were
associated with the data structure. The combination of data attributes
and procedures (called methods) were named a class.

The 1990’s equivalent of function libraries are class libraries or toolkits.
These libraries provide classes to perform many of the same
operations as functional libraries, but with the use of subclassing,
client programmers can easily extend these tools for their own
applications. Frameworks provide APIs that can be implemented by
many different vendors to allow client programmers the choice of
flexibility and performance suitable to their applications.

Java technology is a platform that is continuously extended by new
APIs and Frameworks, such as Swing (and other Java Foundation
Classes), JavaBeans™ (Java’s component architecture), and the Java
DataBase Connectivity API (JDBC™). The list of Java APIs is long
and growing.

2

Object-Oriented Programming 2-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is Object-Oriented Programming?

Analysis and Design

There are five phases in a software development project: analysis,
design, implementation, test, and deployment. They are all important,
but it is critical that enough time is given to analysis and design.

Analysis is the definition of what the system is supposed to
accomplish. This is done by defining the set of actors (users and other
systems that interact with the proposed system) and activities that the
proposed system must accommodate. Also, the analysis must identify
the domain objects (both physical and conceptual) that the proposed
system will manipulate and the behaviors and interactions among
these objects. These behaviors implement the activities that must be
supported by the proposed system. The description of the activities
should be detailed enough to create baseline criteria for the
testing phase.

2

2-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is Object-Oriented Programming?

Analysis and Design (Continued)

Design is the definition of how the system will achieve its goals. In this
phase, a model of the actors, activities, objects, and behaviors is
created for the proposed system. For this class you will use the Unified
Modeling Language (UML) as your modeling tool.

Note – UML is a very large and complex language. You will only be
using a small portion of it. Appendix G, ‘‘UML Modeling and Java’’ is
a reference to the UML elements that we will be using. It also shows
you how to implement Java technology code from a UML class
diagram.

✓ We will be using only class models. If a student is interested in a deeper understanding of
UML, then you should recommend the OO-226 course, "OO Application Analysis & Design
for Java Technology (UML)."

2

Object-Oriented Programming 2-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is Object-Oriented Programming?

Analysis and Design Example

In this module, we will use the example of a shipping company. We
will assume a simple set of requirements:

● The software must support a single shipping company.

● The shipping company maintains a fleet of vehicles that transport
boxes.

● The weight of the boxes is the only important factor in loading a
vehicle.

● The shipping company owns two types of vehicles: trucks and
river barges.

● Boxes are weighed on scales that measure in kilograms; however,
the algorithms for calculating vehicle engine power require the
total vehicle load to be measured in newtons.

Note – A newton is a measure of force (or weight) that is equivalent to
9.8 times the mass of the object in kilograms.

● A graphical user interface (GUI) will be used to keep track of
adding boxes to vehicles.

● Several reports need to be generated from the fleet records.

From these requirements we can isolate a high-level design:

● The following objects must be represented in the system: a
company and two types of vehicles.

● A company is an aggregate of multiple vehicle objects.

● Other functional objects exist: several reports and GUI screens.

2

2-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is Object-Oriented Programming?

Abstraction

As you saw in the chart on Software Engineering, software design has
moved from low-level constructs, such as writing in machine code,
towards much higher levels. There are two interrelated forces that
guided this process: simplification and abstraction. Simplification was
at work when early language designers built high-level language
constructs, such as the IF statements and FOR loops, out of raw
machine codes. Abstraction is the force that hides private
implementation details behind public interfaces.

Abstraction led to the use of subroutines (functions) in high-level
languages and to the pairing of functions and data into objects. At
higher levels, abstraction led to the development of Frameworks and
Application Programming Interfaces (APIs).

✓ In this text, we will not distinguishing between functions, procedures, sub-routines, and
methods.

2

Object-Oriented Programming 2-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is Object-Oriented Programming?

Classes as Blueprints for Objects

Just as a draftsman can create a blueprint for a device that can be used
many times to construct actual devices, a class is a software blueprint
that you can use to instantiate (that is, create) many individual objects.
A class defines the set of data elements (attributes) that define the
objects as well as the set of behaviors or functions (called methods) that
manipulate the object or perform interactions between related objects.
Together attributes and methods are called members. For example, a
vehicle object in a shipping application must keep track of its
maximum and current load along with methods for adding a box
(with a certain weight) to the vehicle.

The Java technology programming language supports three key
features of Object-Oriented Programming: encapsulation, inheritance,
and polymorphism.

Note – Encapsulation is covered in the Section "Encapsulation" on
page 2-17. Inheritance and polymorphism are discussed in Module 6,
"Inheritance."

2

2-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Java Classes
The Java technology class declaration takes the following form:

<class_declaration > ::=
<modifier > class < name> {

<attribute_declaration >*
<constructor_declaration >*
<method_declaration >*

}
✓ This is a modified Backus-Naur Form (BNF). "::=" means "is defined by," [] is a grouping

construct and means "is optional," unless followed by a * or +, * means "zero or more,"
and + means "one or more." The tokens in angle brackets <> are non-terminals and all
other tokens are terminals, including curley brackets {}. In BNF grammar, terminals are
final tokens in the sentence and non-terminals are nodes that expand into other terminals
and non-terminals.

✓ The syntax diagrams in this module are not complete. They are meant to give the student an
overview of the "layout" of the code for a given declaration. A complete BNF grammar of
Java is beyond the scope of this course and is readily available in the JLS.

The <name> can be any legal identifier. It is the name of the class
being declared. There are several possible <modifier >, but for now,
use only public ; this declares that the class is accessible to the
universe. The body of the class declares the set of data attributes,
constructors, and methods associated with the class.

2

Object-Oriented Programming 2-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Attributes

The declaration of an object attribute takes the following form:

<attribute_declaration > ::=
 < modifier > < type > < name> [= < default_value >];

<type > ::= byte | short | int | long | char |
 float | double | boolean | < class_name >

The <name> can be any legal identifier. It is the name of the attribute
being declared. There are several possible <modifier >, but for now,
use either public or private ; this declares that the attribute is
accessible only to the methods within this class. The <type> of the
attribute can be any primitive type or any class.

2

2-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Methods

To define methods, the Java programming language uses an approach
that is similar to other languages, particularly C and C++. The
declaration takes the following form:

<method_declaration > ::=
<modifier > <return_type > <name> (< parameter >*) {

<statement >*
}

<parameter > ::= < parameter_type > <parameter_name >,

The <name> can be any legal identifier, with some restrictions based
on the names that are already in use.

The <modifier > segment can carry a number of different modifiers,
including (but not limited to) public, protected , and private . The
public access modifier indicates that the method can be called from
other code. private indicates that a method can be called only by the
other methods in the class. protected is discussed later in this course.

2

Object-Oriented Programming 2-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Methods

The <return_type > indicates the type of value returned by the
method. If the method does not return a value, it should be declared
void . Java technology is rigorous about returned values, and if the
declaration states that the method returns an int , for example, then
the method must return an int from all possible return paths (and can
be invoked only in contexts that expect an int to be returned). Use the
return statement within a method to pass back a value.

The <parameter > allows argument values to be passed into a
method. Elements of the list are separated by commas, while each
element consists of a type and an identifier.

For example:

1 public class Thing {
2 private int x;
3 public int getX() {
4 return x;
5 }
6 public void setX(int new_x) {
7 x = new_x;
8 }
9 }

The Thing class has a single instance variable x. The method getX
returns the x data attribute; it uses no parameters. A value is returned
from a method using the return statement (line 4). The method setX
modifies the x value with the parameter new_x; it does not return any
value. Here is how this method can be used:

1 public class TestThing {
2 public static void main(String[] args) {
3 Thing thing1 = new Thing();
4
5 thing1.setX(47);
6 System.out.println("thing1.x is " + thing1.getX());
7 }
8 }

The output is:

thing1.x is 47

2

2-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Accessing Object Members

In the previous example you saw the following line of code in the
TestThing.main method:

thing1.setX(47);

This line of code tells the thing1 object (actually a variable, thing1 ,
holding a reference to an object of type Thing) to execute its setX
method. This is called "dot notation" because it allows the programmer
to access non-private attribute and method members of that class.

Within the definition of a method, you do not need to use the dot
notation for accessing local members. For example, in the setX
method of the Thing class we did not use the dot notation to access
the x attribute.

2

Object-Oriented Programming 2-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Information Hiding

The Problem

Suppose that you have a MyDate class that includes the attributes:
day, month , and year . A naive implementation would be to allow
direct access to these data attributes. For example:

public class MyDate {
public int day;
public int month;
public int year;

}

Client code could then access the attributes directly and make
mistakes. For example:

MyDate d = new MyDate()
d.day = 32; // invalid day
d.month = 2; d.day = 30; // plausible but wrong
d.day = d.day + 1; // no check for wrap around

2

2-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Information Hiding

The Solution

To solve the problem, hide the data attributes by making them private
and supply retrieval access methods, get Xxx () , that are often called
"getters" and storage access methods, set Xxx () , that are often called
"setters." These methods allow the class to modify the internal data,
but more importantly to verify that the requested changes are valid.
For example:

MyDate d = new MyDate()

d.setDay(32);
// invalid day, returns false

d.setMonth(2); d.setDay(30);
// plausible but wrong, setDay returns false

d.setDay(d.getDay() + 1);
// this will return false if wrap around needs to occur

2

Object-Oriented Programming 2-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Encapsulation

Encapsulation is the methodology of hiding certain elements of the
implementation of a class, but providing a public interface for the
client software. This is an extension of information hiding because the
information in the data attributes is a significant element of a class’s
implementation.

For example, the programmer for the MyDate class might decide to
reimplement the internal representation of a date as the number of
days since the beginning of some epoch. This could make date
comparisons and calculating date intervals easier. Because the
programmer encapsulated the attributes behind a public interface, the
programmer can make this change without affecting the client code.

2

2-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Constructors

A constructor is a set of instructions designed to initialize an instance.
Parameters can be passed to the constructor in the same way as for a
method. The declaration takes the following form:

<constructor_declaration > ::=
[< modifier >] < class_name > (< parameter >*) {

<statement >*
}

The name of the constructor must always be the same as the class
name. The only valid <modifier > for constructors are public,
protected , and private .

The <parameter > list is the same as for method declarations.

Note – Constructors are not methods. They do not have return values
and are not inherited.

2

Object-Oriented Programming 2-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Constructors

For example:

1 public class Thing {
2 private int x;
3
4 public Thing() {
5 x = 47;
6 }
7 public Thing(int new_x) {
8 x = new_x;
9 }
10
11 public int getX() {
12 return x;
13 }
14 public void setX(int new_x) {
15 x = new_x;
16 }
17 }

The Thing class has a single instance variable x. The first constructor
(with no parameters) initializes x to 47. The second constructor uses a
parameter, new_x, to initialize x.

Here is how these method may be used:

1 public class TestThing {
2 public static void main(String[] args) {
3 Thing thing1 = new Thing();
4 Thing thing2 = new Thing(42);
5
6 System.out.println("thing1.x is " + thing1.getX());
7 System.out.println("thing2.x is " + thing2.getX());
8 }
9 }

The output is:

thing1.x is 47
thing2.x is 42

2

2-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Default Constructor

Every class has at least one constructor. If you do not write a
constructor, the Java programming language provides one for you.
This constructor takes no arguments and has an empty body.

The default constructor enables you to create object instances with
new Xxx () ; otherwise, you would be required to provide a
constructor for every class.

Note – If you add a constructor declaration with arguments to a class
that previously had no explicit constructors, you lose the default
constructor. From that point, calls to new Xxx () will cause compiler
errors.

2

Object-Oriented Programming 2-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Source File Layout

A Java technology source file takes the following form:

<source_file > ::=
[< package_declaration >]
<import_declaration >*
<class_declaration >+

The order of these items is important. That is, any import statements
must precede all class declarations and if you use a package
declaration, it must precede both the classes and imports.

The name of the source file must be the same as the name of the public
class declaration in that file. A source file may include more than one
class declaration, but only one class may be declared public. If a source
file contains no public class declarations, then the name of the source
file is not restricted. However, it is good practice to have one source
file for every class declaration and the name of the file is identical to
the name of the class.

2

2-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Source File Layout

For example, the file VehicleCapacityReport.java should look like
the following:

package shipping.reports.Web;

import shipping.objects.*;
import java.util.List;
import java.io.*;

public class VehicleCapacityReport {
 private List vehicles;
 public void generateReport(Writer output) {
 ...
 }
}

2

Object-Oriented Programming 2-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Software Packages

Most software systems are large. It is common to group classes into
packages to ease the management of the system. UML includes the
concept of packages in its modeling language. Packages can contain
classes as well as other packages forming a hierarchy of packages.

There are many ways to group classes into meaningful packages.
There is no right or wrong way; but a common technique is to group
classes into a package by semantic similarity.

For example, a shipping software system could contain a set of
domain objects (such as the company and vehicles, boxes, destinations,
and so on), a set of reports, and a set of GUI panels that are used to
create the main data entry application. The GUI and reports
subsystems (another name for package in UML) are dependent upon
the objects package. All of these packages are contained in the top-
level package called shipping .

2

2-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The package Statement

The Java technology programming language provides the package
mechanism as a way to group related classes. The package statement
takes the following form:

<package_declaration > ::=
package < top_pkg_name >[.< sub_pkg_name >]*;

You can indicate that classes in a source file belong to a particular
package by using the package statement. For example:

// Class Vehicle of ’objects’ sub-package for the
// ’shipping’ application package.
package shipping.objects;

public class Vehicle {
 ...
}

2

Object-Oriented Programming 2-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The package Statement

The package declaration, if any, must be at the beginning of the source
file. You can precede it with whitespace and comments, but nothing
else. Only one package declaration is permitted and it governs the
entire source file. If a Java source file does not contain a package
declaration, then the class(es) declared in that file belong to the
unnamed (default) package.

Package names are hierarchical, separated by dots. It is usual for the
elements of the package name to be entirely lowercase. However, the
classname usually starts with a capital letter and you can capitalize the
first letter of each additional word to distinguish words in the
classname. These naming conventions and others are discussed in
"Java Coding Conventions" on page 3-35.

Note – If no package statement is included in the file, then all classes
declared in that file "belong" to the default package (that is, a package
with no name).

2

2-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The import Statement

The import statement takes the following form:

<import_declaration > ::=
import < pkg_name>[.< sub_pkg_name >]*.< class_name | *>;

When you want to use packages, use the import statement to tell the
compiler where to find the classes. In fact, the package name (for
example, shipping.objects) forms part of the name of the classes
within the package. You could refer to the Company class as
shipping.objects.Company throughout, or you could use the
import statement and just the class name Company.

Note – The import statements must precede all class declarations.

2

Object-Oriented Programming 2-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The import Statement

The following is a file fragment that uses the import statement.

package shipping.reports.Web;

import shipping.objects.*;

✓ The * indicates that the program can import any class in the shipping.objects package.

import java.util.List;
import java.io.*;

public class VehicleCapacityReport {
 private Company companyForReport;
 ...
}

When you use a package declaration, you do not need to import the
same package or any element of that package. Remember that the
import statement is used to bring classes in other packages into the
current namespace. The current package, whether explicit or implicit,
is always part of the current namespace.

The import statement specifies the class to which you want access. For
example, if you only want the Writer class (from the java.io
package) included in the current namespace, then you would use:

import java.io.Writer;

If you want access to all classes within a package, use "* ". For
example, to access all classes in the java.io package use:

import java.io.*;

Note – The use of the import statement specifies a path for the
compiler to find code, not actually load it as an #include statement
would do in C or C++. Using the import statement with "* " does not
affect performance.

2

2-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Directory Layout and Packages

Packages are “stored” in a directory tree containing a branch that is the
package name. For example, the Company.class file should exist in
the following directories for the Solaris Operating Environment and
the Microsoft Windows operating environment, respectively:

path/shipping/domain Solaris Operating Environment
path\shipping\domain Microsoft Windows environment

2

Object-Oriented Programming 2-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Directory Layout and Packages

Development

It is common to be working on several development projects at once.
There are many ways to organize your development files. This section
describes one such method.

Figure 2-1 Example Project Development Directory Structure

Figure 2-1 demonstrates an example development directory hierarchy
for multiple projects. The important element of this hierarchy is that
the source files of each project are separated from the compiled
(.class) files.

Normally the Java compiler will place the class files in the same
directory as the source files. The class files can be rerouted to another
directory using the -d option of the javac command. Also, if you are
compiling a set of files within the package hierarchy (that is, not at the
top-level source directory), then you must use the -sourcepath
option. For example:

> cd JavaProject/BankPrj/src/banking/domain
> javac -sourcepath JavaProject/BankPrj/src \

-d JavaProject/BankPrj/class *.java

JavaProjects/

BankPrj/

Compiler/

src/

doc/
class/

banking/

domain/
GUI/
reports/

banking/

domain/
GUI/
reports/

src/

doc/
class/

2

2-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Directory Layout and Packages

Deployment

An application can be deployed on a client machine without
manipulating the user’s CLASSPATHenvironment variable.

If the application is deployed as a JAR file, then that file should be
copied into the “library extension” directory. This directory exists in
path /jre/lib/ext/ ; for example:

/usr/jdk1.2/jre/lib/ext/ Solaris Operating Environment
C:\jdk1.2\jre\lib\ext\ Microsoft Windows environment

If the application is deployed as a hierarchy of .class files, then place
the complete package hierarchy under the “JRE classes” directory. This
directory exists in path /jre/classes/ ; for example:

/usr/jdk1.2/jre/classes/ Solaris Operating Environment
C:\jdk1.2\jre\classes\ Microsoft Windows environment

There are no special environment variables (such as JDK_HOME,
JAVA_HOMEor CLASSPATH) required; moreover, existing settings might
result in improper operation. Check these settings for possible
conflicts.

✓ In releases prior to Java 2 SDK, the CLASSPATHenvironment variable was required. For the
compiler to locate the shipping.domain.Company class while compiling Vehicle.java , the
CLASSPATHenvironment had to include the following package path (prior to JDK1.2): For
Solaris Operating Environments, CLASSPATH=home/anton/mypackages: . For Microsoft
Windows environments, set CLASSPATH=\home\anton\mypackages; had to be included.

2

Object-Oriented Programming 2-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Terminology Recap

The following describes some of the terms introduced in this module:

● Class – A way to define new types in the Java programming
language. The class can be considered as a blueprint—a model of
the object you are describing.

● Object – An actual instance of a class. An object is what you get
each time you instantiate a class using new. An object is also
known as an instance.

● Attribute – A data element of an object. An attribute stores
information for an object. An attribute is also known as a data
member, an instance variable, or a data field.

● Method – A functional element of an object. A method is also
known as a function or a procedure.

● Constructor – A "method-like" construct used to initialize (or
build) a new object. Constructors are not members (for example,
they are not inherited).

● Package – A grouping of classes and/or subpackages.

2

2-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the Java Technology API Documentation

A set of HTML files document the supplied application programming
interface (API). The layout of this documentation is hierarchical, so
that the home page lists all the packages as hyperlinks. If a particular
package hotlink is selected, the classes that are members of that
package are listed. Selecting a class hotlink from a package page
presents a page of information about that class. Figure 2-2 shows one
such class.

2

Object-Oriented Programming 2-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the Java Technology API Documentation

Figure 2-2 Java Technology API Documentation With HTML

2

2-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the Java Technology API Documentation

The main sections of a class document include the following:

● The class hierarchy

● A description of the class and its general purpose

● A list of member variables

● A list of constructors

● A list of methods

● A detailed list of variables, with descriptions of the purpose and
use of each variable

● A detailed list of constructors, with descriptions

● A detailed list of methods, with descriptions

2

Object-Oriented Programming 2-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Objects and Classes

Exercise objective – You will explore the Java 2 SDK API
documentation. You will write, compile, and run three versions of a
program that explores the use of object-oriented data hiding and
encapsulation. You will create a program that models a simple bank
account.

Preparation

To successfully complete this lab, you must understand the concepts of
classes and objects.

Tasks

In a Web browser, view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod02). A listing of this directory will show
three subdirectories: one for each of the exercises below.

Exercise 1: Use the Java API Documentation (Level 1 Lab)

In this exercise you will explore the Java 2 SDK class API
documentation using a Web browser. You will hunt for a specific
method in the String class.

Exercise 2: Explore Encapsulation (Level 2 Lab)

In this exercise you will explore the purpose of proper object
encapsulation. You will create a class in three steps demonstrating the
use of information hiding.

Exercise 3: Create a Simple Banking Package (Level 2 Lab)

In this exercise you will create the Account class in the banking
package. This will introduce you to the Banking project which we will
return to in several labs up to Module 9.

2

2-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Objects and Classes

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

2

Object-Oriented Programming 2-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Define modeling concepts: abstraction, encapsulation, and packages

❑ Discuss why Java technology application code is reusable

❑ Define class, member, attribute, method, constructor, and package

❑ Use the access modifiers private and public as appropriate for
the guidelines of encapsulation

❑ Invoke a method on a particular object

❑ In a Java technology program, identify the following:

▼ The package statement

▼ The import statements

▼ Classes, methods, and attributes

▼ Constructors

❑ Use the Java technology application programming interface (API)
online documentation

2

2-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

Does your organization spend enough time on analysis and design?

What domain objects and relationships appear in your existing
applications?

3-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Identifiers,Keywords, andTypes 3

Objectives

Upon completion of this module, you should be able to:

● Use comments in a source program

● Distinguish between valid and invalid identifiers

● Recognize Java technology keywords

● List the eight primitive types

● Define literal values for numeric and textual types

● Define the terms primitive variable and reference variable

● Declare variables of class type

● Construct an object using new

● Describe default initialization

● Describe the significance of a reference variable

● State the consequences of assigning variables of class type

This module covers some of the basic components used in Java
technology programs including variables, keywords, primitive types,
and class types.

✓ Documentation comments are explained in this module. The complete definition of the
documentation system used by the JavaSoft™ team and created by javadoc is defined in
“The Design of Distributed Hyperlinked Programming Documentation,” a paper by Lisa
Friendly. It is available from http://www.javasoft.com/doc/api_documentation.html .

3

3-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● Do you know the primitive Java types?

● Can you describe the difference between variables holding
primitive values as compared with object references?

✓ Java is not a pure OO language. It uses primitive data types to improve performance of
low-level operations such as integer and floating point arithmetic and comparisons.

3

Identifiers, Keywords, and Types 3-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Comments

There are three permissible styles for inserting comments:

// comment on one line
/* comment on one or more lines */
/** documentation comment */

✓ The last comment containing two asterisks at the beginning and one at the end is correct.

Documentation comments placed immediately before a declaration (of
a variable, method, or class) indicate that the comments should be
included in any automatically generated documentation (the HTML
files generated by the javadoc command) to serve as a description of
the declared item.

Note – The format of these comments and the use of the javadoc tool
is discussed in the docs/tooldocs/solaris directory of the API
documentation for Java 2 SDK.

3

3-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Semicolons, Blocks, and Whitespace

In the Java programming language, a statement is one or more lines of
code terminated with a semicolon (;).

For example,

total s = a + b + c + d + e + f;

is the same as

total s = a + b + c +
d + e + f;

3

Identifiers, Keywords, and Types 3-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Semicolons, Blocks, and Whitespace

A block or a compound statement is a collection of statements bound
by opening and closing braces ({ }). Block statements are also used to
group declarations belonging to a class.

You can nest blocks of statements. Consider the TestGreeting class,
which consists of the main method. The body of this method is a block
of statements that is a single unit, the unit itself being one of a group
of items in the class TestGreeting block.

The following are other examples of block statements or groupings:

// a block statement

{
 x = y + 1;
 y = x + 1;
}

3

3-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Semicolons, Blocks, and Whitespace

// a block used in a class definition
public class MyDate {

private int day;
private int month;
private int year;

}

// an example of a block statement nested within
// another block statement
while (i < large) {

a = a + i;
 // nested block

if (a == max) {
b = b + a;
a = 0;

}
}

You can have whitespace between elements of the source code. Any
amount of whitespace is allowed. You can use whitespace, including
spaces, tabs, and newlines, to enhance the visual appearance of your
source code.

{
int x;

x = 23 * 54;
}

3

Identifiers, Keywords, and Types 3-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Identifiers

In the Java programming language, an identifier is a name given to a
variable, class, or method. Identifiers start with a letter, underscore (_),
or dollar sign ($). Subsequent characters can be digits. Identifiers are
case sensitive and have no maximum length.

✓ Specifically, the Java Language Specification states that an identifier starts with a Unicode letter
and is followed by any number of Unicode letters or digits. The specification lists the
Unicode letters and digits. Unicode represents an extended ASCII set capable of handling
international characters.

The following are valid identifiers:

● identifier

● userName

● user_name

● _sys_var1

● $change

3

3-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Identifiers

Java technology sources are in 16-bit Unicode rather than 8-bit ASCII
text, so a letter is a considerably wider definition than just a to z and A
to Z.

While identifiers can use non-ASCII characters, be aware of the
following caveats:

● Unicode can support different characters that look the same.

● Class names should only be in ASCII characters because most file
systems do not support Unicode character.

An identifier cannot be a keyword, but it can contain a keyword as
part of its name. For example, thisOne is a valid identifier, but this is
not, because this is a Java keyword. Java keywords are discussed
next.

Note – Identifiers containing a dollar sign ($) are generally unusual,
although languages, such as BASIC, along with VAX/VMS systems,
make extensive use of them. Because they are unfamiliar, it is probably
best to avoid them unless there is a local convention or other pressing
reason for including this symbol in the identifier.

3

Identifiers, Keywords, and Types 3-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java Keywords

Table 3-1 lists keywords that are used in the Java programming
language.

Table 3-1 Java Keywords

✓ A discussion of strictfp is beyond the scope of this course.

Keywords have special meaning to the Java technology compiler. They
identify a data type name or program construct name.

The following are important notes about the keywords:

● The literals true , false , and null are lowercase, not uppercase as
in the C++ language. Strictly speaking, these are not keywords but
literals; however, the distinction is academic.

● There is no sizeof operator; the size and representation of all
types is fixed and is not implementation dependent.

● goto and const are keywords that are not used in the Java
programming language.

✓ There is no longer a keyword byvalue . The keywords const and goto still exist, but remain
unused. While true and false would seem to be keywords, they are actually boolean
literals. The word null is also a literal. You can confirm this by reading “The Java
Language Specification,” ISBN 0-201-63451-1 available from
http://java.sun.com/docs/books/jls /index.html

abstract do implements private this

boolean double import protected throw

break else instanceof public throws

byte extends int return transient

case false interface short true

catch final long static try

char finally native strictfp void

class float new super volatile

continue for null switch while

default if package synchronized

3

3-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Primitive Types

The Java programming language defines literal values for eight
primitive data types and one special type. The primitive types can be
considered in four categories:

● Logical boolean

● Textual char

● Integral byte , short , int , and long

● Floating point double and float

3

Identifiers, Keywords, and Types 3-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Logical – boolean

Logical values have two states: on or off, true or false, or yes or no.
Such a value is represented by the boolean type. The boolean type
has two literal values: true and false . The following code is an
example of the declaration and initialization of a boolean type
variable:

// declares the variable truth as boolean and
// assigns it the value true
boolean truth = true;

Note – There are no casts between integer types and the boolean type.
Some languages, most notably C and C++, allow numeric values to be
interpreted as logical values. This is not permitted in the Java
programming language; when a boolean type is required only
boolean values can be used.

3

3-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Textual – char and String

Single characters are represented by using the char type. A char
represents a 16-bit unsigned Unicode character. You must enclose a
char literal in single quotes (' '). For example:

● 'a' The letter a

● '\t' A tab

● '\u????' A specific Unicode character, ????, is replaced with
exactly four hexadecimal digits (for example,
’\u03A6’ is the Greek letter phi Φ)

The String type, which is not a primitive but a class, is used to
represent sequences of characters. The characters themselves are
Unicode, and the backslash notation shown previously for the char
type also works in a String . Unlike C and C++, strings do not end
with \0 .

✓ For more on escape codes refer students to the Java Language Specification Web site:
http://java.sun.com/docs/books/jls/html/3.doc.html#101089

3

Identifiers, Keywords, and Types 3-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Textual – char and String (Continued)

A String literal is enclosed in double quote marks:

"The quick brown fox jumps over the lazy dog."

Some examples of the declarations and initialization of char and
String type variables are:

// declares and initializes a char variable
char ch = ’A’;

// declares two char variables
char ch1,ch2;

// declares two String variables and initializes them
String greeting = "Good Morning !! \n ";
String errorMessage = "Record Not Found ! ";

// declares two String variables
String str1,str2;

3

3-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Integral – byte , short , int , and long

There are four integral types in the Java programming language. Each
type is declared using one of the keywords byte , short , int , or long .
You can represent literals of integral type using decimal, octal, or
hexadecimal forms as follows:

● 2 The decimal value is two

● 077 The leading zero indicates an octal value

● 0xBAAC The leading 0x indicates a hexadecimal value

Note – All integral types in the Java programming language are signed
numbers.

3

Identifiers, Keywords, and Types 3-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Integral – byte , short , int , and long (Continued)

Integral literals are of type int unless explicitly followed by the letter
"L." The L indicates a long value. In the Java programming language,
you can use either an uppercase or lowercase L, but lowercase is a
poor choice because it is usually hard to distinguish it from the digit 1.
Long versions of the literals shown previously are:

● 2L The L indicates that the decimal value two is
represented as a long

● 077L The leading zero indicates an octal value

● 0xBAACL The 0x prefix indicates a hexadecimal value

3

3-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Integral – byte , short , int , and long (Continued)

The size and range for the four integral types are shown in Table 3-2.
The range representation is defined by the Java programming
language specification as a two’s complement and is platform
independent.

Table 3-2 Integral Data Types – Size and Range

Integer Length Name or Type Range

8 bits byte -27 to 27 -1

16 bits short -215 to 215 -1

32 bits int -231 to 231 -1

64 bits long -263 to 263 -1

3

Identifiers, Keywords, and Types 3-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Floating Point – float and double

You can declare a floating point variable using the keywords float or
double . The following list contains examples of floating point
numbers. A numeric literal is a floating point if it includes either a
decimal point or an exponent part (the letter E or e), or is followed by
the letter F or f (float) or the letter D or d (double).

● 3.14 A simple floating-point value (a double)

● 6.02E23 A large floating-point value

● 2.718F A simple float size value

● 123.4E-306D A large double value with redundant D

Note – The ‘23’ after the ‘E’ in the second example is implicitly
positive. That example is equivalent to 6.02E+23 .

3

3-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Java Types

Floating Point – float and double (Continued)

The format of a floating point number is defined by the Java Language
Specification to be Institute of Electrical and Electronics Engineers
(IEEE) 754, using the sizes shown in Table 3-3. This format is platform
independent.

Table 3-3 Floating Point Data Type Size

Note – Floating point literals are double unless explicitly declared
as float .

Float Length Name or Type

32 bits float

64 bits double

3

Identifiers, Keywords, and Types 3-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Variables, Declarations, and Assignments

The following program illustrates how to declare and assign values to
int , float , boolean , char , and String type variables:

1 public class Assign {
2 public static void main (String args []) {
3 // declare integer variables
4 int x, y;
5 // declare and assign floating point
6 float z = 3.414f;
7 // declare and assign double
8 double w = 3.1415;
9 // declare and assign boolean
10 boolean truth = true;
11 // declare character variable
12 char c;
13 // declare String variable
14 String str;
15 // declare and assign String variable
16 String str1 = "bye";
17 // assign value to char variable
18 c = 'A';
19 // assign value to String variable
20 str = "Hi out there!";
21 // assign values to int variables
22 x = 6;
23 y = 1000;
24 }
25 }

The following are examples of illegal assignments:

y = 3.1415926; // 3.1415926 is not an int; It
// requires casting and decimal will
// be truncated.

w = 175,000; // The comma symbol (,) cannot appear;

truth = 1; // this is a common mistake made by
// ex C / C++ programmers

z = 3.14156; // Can’t fit double into a
// float; This requires casting.

3

3-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java Reference Types

As you have seen, there are eight primitive Java types: boolean , char ,
byte , short , int , long , float , and double . All other types refer to
objects rather than primitives. Variables that refer to objects are
reference variables. For example, we can define a class MyDate :

1 public class MyDate {
2 private int day = 1;
3 private int month = 1;
4 private int year = 2000;
5 }

We can then use MyDate like this:

1 public class TestMyDate {
2 public static void main(String[] args) {
3 MyDate today = new MyDate();
4 }
5 }

The variable today is a reference variable holding one MyDate object.

3

Identifiers, Keywords, and Types 3-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects

You have seen how you must execute a call to new Xxx() to allocate
space for a new object. You will see that sometimes you can place
arguments in the parentheses, for example;
new MyDate(22, 7, 1964) . Using the keyword new causes the
following:

● First, the space for the new object is allocated and initialized to the
form of zero or null. In the Java programming language, this phase
is indivisible to ensure that you cannot have an object with
random values in it.

● Second, any explicit initialization is performed.

● Third, a constructor, which is a special method, is executed.
Arguments passed in the parentheses to new are passed to the
constructor (22, 7, 1964).

● Last, the variable is assigned the reference to the new object in
heap memory.

This section investigates these phases.

3

3-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects

Memory Allocation and Layout

In a method body, the declaration

MyDate my_birth = new MyDate(22, 7, 1964);

allocates storage only for the reference:

The keyword new implies allocation and initialization of storage.

MyDate my_birth = new MyDate (22, 7, 1964);

my_birth ????

my_birth ????

day

 month

year

0

0

0

3

Identifiers, Keywords, and Types 3-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects

Explicit Attribute Initialization

If you place simple assignment expressions in your member
declarations, you can perform explicit member initialization during
construction of your object.

In our MyDate class we declared the explicit initialization of all three
attributes:

MyDate my_birth = new MyDate (22, 7, 1964);

my_birth ????

day

 month

year

1

1

2000

3

3-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects

Executing the Constructor

The final stage of initialization of a new object is to call the constructor.
The constructor allows you to override the default initialization. You
can perform computations. You can also pass arguments into the
construction process so that the code that requests the construction of
the new object can control the object it creates.

MyDate my_birth = new MyDate(22, 7, 1964) ;

my_birth ????

day

 month

year

22

7

1964

3

Identifiers, Keywords, and Types 3-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects

Variable Assignment

The assignment then sets up the reference variable so that it refers
properly to the newly created object.

MyDate my_birth = new MyDate(22, 7, 1964);

my_birth 0x01abcdef

day

 month

year

22

7

1964

3

3-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects

This Is Not the Whole Story

It turns out that object construction and initialization is much more
complex than we have describe here. We will revisit this topic in
"Constructing and Initializing Objects: A Slight Reprise" on page 6-34
in Module 6, "Inheritance."

3

Identifiers, Keywords, and Types 3-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Assignment of Reference Types

In the Java programming language, a variable declared with a type of
class is referred to as a reference type. This is because it refers to a non-
primitive type. This has consequences for the meaning of assignment.
Consider this code fragment:

int x = 7;
int y = x;
MyDate s = new MyDate(22, 7, 1964);
MyDate t = s;

Four variables are created: two primitives of type int and two
references of type MyDate . The value of x is seven, and this value is
copied into y. Both x and y are independent variables and further
changes to either do not affect the other.

3

3-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Assignment of Reference Types

With the variables s and t , only one MyDate object exists and it
contains the date 22 July 1964. Both s and t refer to that single object.

With a reassignment of the variable t , the new MyDate object (for 22
December 1964) is created and t refers to this object. This scenario is
depicted as:

t = new MyDate(22, 12, 1964); // reassign the variable

x 7

y 7

s 0x01234567

t 0x01234567

22 7 1964

x 7

y 7

s 0x01234567

t 0x12345678

22 7 1964

22 12 1964

3

Identifiers, Keywords, and Types 3-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Pass-by-Value

The Java programming language passes arguments only “by value”
that is, the argument cannot be changed by the method called. When an
object instance is passed as an argument to a method, the value of the
argument is a reference to the object. The contents of the object can be
changed in the called method, but the object reference is never
changed.

✓ There has been much discussion on the ses_java e-mail alias about “is Java pass-by-
value, or pass-by-reference for objects, and so on.” The main issue is that pass-by-
reference allows a method to change the value of a variable in the context that the method
was called. For example, in C you can pass a reference to an integer variable and modify
the value of the calling-variable. This is prohibited in Java.

void changeInt(int* variable) {
*variable = 5;

}
void main() {

int val = 4;
changeInt(&val);
printf("val = %d\n", val);

}

3

3-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Pass-by-Value

The following code example illustrates this point:

1 public class PassTest {
2
3 // Methods to change the current values
4 public static void changeInt(int value) {
5 value = 55;
6 }
7 public static void changeObjectRef(MyDate ref) {
8 ref = new MyDate(1, 1, 2000);
9 }
10 public static void changeObjectAttr(MyDate ref) {
11 ref.setDay(4);
12 }
13
14 public static void main(String args[]) {
15 MyDate date;
16 int val;
17
18 // Assign the int
19 val = 11;
20 // Try to change it
21 changeInt(val);
22 // What is the current value?
23 System.out.println("Int value is: " + val);
24
25 // Assign the date
26 date = new MyDate(22, 7, 1964);
27 // Try to change it
28 changeObjectRef(date);
29 // What is the current value?
30 date.print();
31
32 // Now change the day attribute
33 // through the object reference
34 changeObjectAttr(date);
35 // What is the current value?
36 date.print();
37 }
38 }
39

3

Identifiers, Keywords, and Types 3-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Pass-by-Value

This code outputs the following:

> java PassTest

Int value is: 11
MyDate: 22-7-1964
MyDate: 4-7-1964

The MyDate object is not changed by the changeObjectRef method;
however, the day attribute of the MyDate object is changed by the
changeObjectAttr method.

3

3-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The this Reference

There are a few uses of the this keyword:

● To reference local attribute and method members within a local
method or constructor

● To pass the current object as a parameter to another method

The following class definition demonstrates all three uses.

1 public class MyDate {
2 private int day = 1;
3 private int month = 1;
4 private int year = 2000;

Initially, we create a simple date class with three attributes.

3

Identifiers, Keywords, and Types 3-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The this Reference

5
6 public MyDate(int day, int month, int year) {
7 this.day = day;
8 this.month = month;
9 this.year = year;
10 }

In this first constructor, we use the this reference to distinguish the
parameters from the object’s attributes.

11 public MyDate(MyDate date) {
12 this.day = date.day;
13 this.month = date.month;
14 this.year = date.year;
15 }
16
17 public MyDate addDays(int more_days) {
18 MyDate new_date = new MyDate(this);
19
20 new_date.day = new_date.day + more_days;
21 // Not Yet Implemented: wrap around code...
22
23 return new_date;
24 }

This final example shows a method addDays that constructs and
returns a new MyDate object. This new date is constructed from the
current object using the third constructor.

3

3-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The this Reference

25 public void print() {
26 System.out.println("MyDate: " + day + "-" + month
27 + "-" + year);
28 }
29 }

This last method will be used to test our MyDate code. The following
TestMyDate class can be used to test these constructors and methods:

1 public class TestMyDate {
2 public static void main(String[] args) {
3 MyDate my_birth = new MyDate(22, 7, 1964);
4 MyDate the_next_week = my_birth.addDays(7);
5
6 the_next_week.print();
7 }
8 }

Running TestMyDate gives the following output:

MyDate: 29-7-1964

3

Identifiers, Keywords, and Types 3-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java Coding Conventions

The following are coding conventions of the Java programming
language:

● Packages – Package names should be nouns in lower case.

package shipping.objects

● Classes – Class names should be nouns, in mixed case, with the
first letter of each word capitalized.

class AccountBook

● Interfaces – Interface names should be capitalized like class names.

interface Account

● Methods – Method names should be verbs, in mixed case, with the
first letter in lowercase. Within each method name, capital letters
separate words. Limit the use of underscores.

balanceAccount()

3

3-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java Coding Conventions

✓ Native methods use underscores to create complex names. For example,
java.lang.String becomes java_lang_String .

● Variables – All variables should be in mixed case with a lowercase
first letter. Words are separated by capital letters. Limit the use of
underscores, and avoid using the dollar sign ($) because this
character has special meaning to inner classes.

currentCustomer

Variables should be meaningful and indicate to the casual reader the
intent of their use. Avoid single character names except for temporary
“throwaway” variables (for example, i , j , and k, used as loop control
variables).

● Constants – Primitive constants should be all uppercase with the
words separated by underscores. Object constants can use mixed-
case letters.

HEAD_COUNT
MAXIMUM_SIZE

3

Identifiers, Keywords, and Types 3-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java Coding Conventions

● Control structures – Use braces ({ }) around all statements, even
single statements, when they are part of a control structure, such
as an if-else or for statement.

if (condition) {
 do something
} else {

do something else
}

● Spacing – Place only a single statement on any line, and use two or
four-space indentations to make your code readable. The number
of spaces can vary depending on what code standards are used.

● Comments – Use comments to explain code segments that are not
obvious. Use the // comment delimiter for normal commenting;
you can comment large sections of code using the /* . . . */
delimiters. Use the /** . . . */ documenting comment to provide
input to javadoc for generating HTML documentation for
the code.

// A comment that takes up only one line.

/* Comments that continue past one line and take up
 space on multiple lines...*/

/** A comment for documentation purposes.
 * @see Another class for more information
*/

Note – @seeis a special javadoc tag giving the effect of a "see also"
link that references a class or method. For more information about
javadoc , refer to the complete definition of the documentation system
in “The Design of Distributed Hyperlinked Programming
Documentation,” a paper by Lisa Friendly. It is available from
http://www.javasoft.com/doc/api_documentation.html .

Note – For more information on Sun’s Java coding conventions refer to
the Web page:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

3

3-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Objects

Exercise objective – Using the correct Java keywords, write a
program to create a class and an object from the class. Compile and
run the program; then verify that the references are assigned and
manipulated as described in this module.

Preparation

To successfully complete this lab, you must be able to compile and run
a Java program. You also need to be familiar with the object-oriented
concepts of classes and objects, and with the concept of references.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod03). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Investigate Reference Assignment (Level 2 Lab)

In this exercise you will investigate Java reference variables; object
creation and reference variable assignment.

Exercise 2: Create Customer Accounts (Level 2 Lab)

In this exercise you will expand the Banking project by adding a
Customer class. A customer will contain one Account object.

3

Identifiers, Keywords, and Types 3-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Objects

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

3

3-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you
can:

❑ Use comments in a source program

❑ Distinguish between valid and invalid identifiers

❑ Recognize Java technology keywords

❑ List the eight primitive types

❑ Define literal values for numeric and textual types

❑ Define the terms primitive variable and reference variable

❑ Declare variables of class type

❑ Construct an object using new

❑ Describe default initialization

❑ Describe the significance of a reference variable

❑ State the consequences of assigning variables of class type

3

Identifiers, Keywords, and Types 3-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

Can you think of examples of classes and objects in your existing
applications?

4-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

ExpressionsandFlowControl 4

Objectives

Upon completion of this module, you should be able to:

● Distinguish between instance and local variables

● Describe how instance variables are initialized

● Identify and correct a Possible reference before assignment
compiler error

● Recognize, describe, and use Java software operators

● Distinguish between legal and illegal assignments of primitive
types

● Identify boolean expressions and their requirements in control
constructs

● Recognize assignment compatibility and required casts in
fundamental types

● Use if , switch , for , while , and do constructions and the
labeled forms of break and continue as flow control structures
in a program

This module discusses variables, operators, and arithmetic
expressions, and lays out the different control structures governing
the path of execution.

4

4-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● What types of variables are useful to programmers (for instance,
programmers of other languages will want to know how the Java
programming language defines and handles global and local
variables)?

● Can multiple classes have variables with the same name and, if so,
what is their scope?

✓ Good use of variables greatly improves a computer program all around, from execution
efficiency to maintainability. This module discusses the implications of where and how
variables are declared, and the implications of how they are used in expressions.

● What types of control structures are used in other languages?
What methods do languages in general employ for flow control
and for discontinuing the flow (such as in a loop or switch)?

✓ Control structures are what govern the path of program execution. Like variables, good
use of control structures yields efficient, straightforward programs. In while loops, certain
conditions have to be met in order to exit the loop. In switch controls, a break is used to
exit. Older languages used the goto statement, for lack of a better way, to control the
program flow. The Java programming language does not use goto .

✓ Focus the students’ attention on the following areas:

• Use variables effectively.

• Determine the implications of how and where variables are declared.

• Learn the implications of how variables are used.

• Learn about operator usage and expressions in a Java software program.

• Control a Java software program’s execution path with control structures.

4

Expressions and Flow Control 4-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Variables and Scope

You have seen two ways to describe variables: variables of primitive
type or variables of reference type. You have also seen two places to
declare variables: inside a method or outside a method but within a
class definition. You can also define variables as method parameters or
constructor parameters.

Variables defined inside a method are called local variables, but are
sometimes referred to as automatic, temporary, or stack variables.

4

4-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Variables and Scope (Continued)

Variables defined outside a method are created when the object is
constructed using the new Xxx () call. There are two possible kinds of
variables. The first kind is a class variable that is declared using the
static keyword. This is done when the class is loaded. Class
variables continue to exist for as long as the class exists. The second
kind is an instance variable that is declared without the static
keyword. Instance variables continue to exist for as long as the object
is referenced. Instance variables are sometimes referred to as member
variables, because they are members of the class. The static variable
is discussed later in this course in more detail.

Method parameter variables define arguments passed in a method
call. Each time the method is called, a new variable is created and it
lasts only until the method is exited.

Local variables are created when execution enters the method, and are
destroyed when the method is exited. This is why local variables are
sometimes referred to as “temporary or automatic.” Variables that are
defined within a member function are local to that member function,
so you can use the same variable name in several member functions to
refer to different variables. This is illustrated in the example on
page 4-5.

4

Expressions and Flow Control 4-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Variable Scope Example

public class ScopeExample {
 private int i=1;

 public void firstMethod() {
 int i=4, j=5;

 this.i = i + j;
 secondMethod(7);
 }
 public void secondMethod(int i) {

int j=8;
 this.i = i + j;
 }
}

public class TestScoping {
public static void main(String[] args) {

ScopeExample scope = new ScopeExample();

 scope.firstMethod();
 }
}

4

4-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Variable Initialization

No variable in a Java program can be used before being initialized.
When an object is created, instance variables are initialized with the
following values at the time the storage is allocated:

Table 4-1 Default Values of Primitive Types

Note – A reference that has the null value refers to no object. An
attempt to use the object it refers to causes an exception. Exceptions
are errors that occur at runtime and are discussed in a later module.

While variables defined outside of a method are initialized
automatically, local variables must be initialized manually before use.
The compiler flags an error if it can determine a condition where a
variable can be used before being initialized.

public void doComputation() {
int x = (int)(Math.random() * 100);
int y;
int z;
if (x > 50) {

y = 9;
}
z = y + x; // Possible use before initialization

}

Variable Value

byte 0

short 0

int 0

long 0L

float 0.0F

double 0.0D

char '\u0000'

boolean false

All reference types null

4

Expressions and Flow Control 4-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Operators

The Java software operators are similar in style and function to those
of C and C++. Table 4-2 lists the operators in order of precedence (L to
R means left-to-right associative; R to L means right-to-left
associative):

Note – The instanceof operator is unique to the Java programming
language and is discussed in Module 6, "Inheritance."

Table 4-2 Operators in Order of Precedence

Separator . [] () ; ,

Associative Operators

R to L ++ -- + - ~ ! (data type)

L to R * / %

L to R + -

L to R << >> >>>

L to R < > <= >= instanceof

L to R == !=

L to R &

L to R ^

L to R |

L to R &&

L to R ||

R to L ?:

R to L = *= /= %= += -= <<=
>>= >>>= &= ^= |=

4

4-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Logical Operators

Most Java operators are taken from other languages and behave as
expected.

Relational and logical operators return a boolean result. There is no
automatic conversion of int to boolean .

int i = 1;
if (i) // generates a compile error
if (i != 0)// Correct

The boolean operators supported are ! , & , ^ , and | for the algebraic
Boolean operations NOT, AND, XOR, and OR, respectively. Each of
these returns a boolean result. The operators && and || are the short
circuit equivalents of the operators & and | . Short circuit logical
operators are discussed on the following page.

4

Expressions and Flow Control 4-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Short-Circuit Logical Operators

The operators && (defined as AND) and || (defined as OR) perform
short-circuit logical expressions. Consider this example:

MyDate d;
if ((d != null) && (d.day > 31)) {
 // do something with d
}

The boolean expression that forms the argument to the if ()
statement is legal and entirely safe. This is because the second
subexpression is skipped when the first subexpression is false, because
the entire expression is always false when the first subexpression is
false, regardless of how the second subexpression evaluates. Similarly,
if the || operator is used and the first expression returns true, the
second expression is not evaluated because the whole expression is
already known to be true.

4

4-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Bitwise Logical Operators

The Java programming language supports bitwise operations on
integral data types. These are represented as the operators ~ , & , ^ ,
and | for the bitwise operations of NOT (bitwise complement), bitwise
AND, bitwise XOR, and bitwise OR, respectively. The bit shift
operators are discussed later in this course.

4

Expressions and Flow Control 4-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Right-Shift Operators >> and >>>

The Java programming language provides two right-shift operators.

The operator >> performs an arithmetic or signed right shift. The result
of this shift is that the first operand is divided by two raised to the
number of times specified by the second operand. For example:

128 >> 1 returns 128/2 1 = 64
256 >> 4 returns 256/2 4 = 16
-256 >> 4 returns -256/2 4 = -16

The >> operator results in the sign bit being copied during the shift.

The logical or unsigned right shift operator >>> works on the bit pattern
rather than the arithmetic meaning of a value and always places zeros
in the most significant bits. For example:

1010 ... >> 2 gives 111010 ...
1010 ... >>> 2 gives 001010 ...

4

4-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Right-Shift Operators >> and >>> (Continued)

Note – The shift operators reduce their right-hand operand modulo 32
for an int type left-hand operand and modulo 64 for a long type
right-hand operand. Therefore, for any int x , x >>> 32 results in
x being unchanged, not zero as you might expect.

Note – The >>> operator is permitted only on integral types, and is
effective only on int or long values. If you use it on a short or byte
value, the value is promoted, with sign extension, to an int before
>>> is applied. By this point, the unsigned shift has usually become a
signed shift.

4

Expressions and Flow Control 4-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Left-Shift Operator (<<)

The operator << performs a left shift. The result of this shift is that the
first operand is multiplied by two raised to the number specified by
the second operand. For example:

128 << 1 returns 128*2 1= 256
16 << 2 returns 16*2 2 = 64

4

4-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Shift Operator Examples

These examples show the bit patterns of a positive and a negative
number and the bit patterns resulting from the three shift operators:
>>, >>>, and <<.

Note – The code that generated these examples (including printing out
the complete bit pattern) can be found in file:
mod04/examples/TestShift.java .

4

Expressions and Flow Control 4-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

String Concatenation With +

The + operator performs a concatenation of String objects, producing
a new String .

String salutation = "Dr. ";
String name = "Pete" + " " + "Seymour";
String title = salutation + " " + name;

The result of the last line is:

Dr. Pete Seymour

If either argument of the + operator is a String object, then the other
is converted to a String . All objects can be converted to a String
automatically, although the result might be rather cryptic. The object
that is not a string is converted to a string equivalent using the
toString() member function.

4

4-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Casting

Casting means assigning a value of one type to a variable of another
type. If the two types are compatible, the Java technology performs the
conversion automatically. For example, an int value can always be
assigned to a long variable.

Where information would be lost in an assignment, the compiler
requires that you confirm the assignment with a typecast. This can be
done, for example, by “squeezing” a long value into an int variable.
Explicit casting is done like this:

long bigValue = 99L;
int squashed = (int)(bigValue);

The desired target type is placed in parentheses and used as a prefix to
the expression that must be modified. Although it might not be
necessary, it is advisable to enclose the entire expression to be cast in
parentheses. Otherwise, the precedence of the cast operation can cause
problems.

4

Expressions and Flow Control 4-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Note – Reference type variables can also be cast; see "Casting Objects"
on page 6-16 in Module 6, "Inheritance."

4

4-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Promotion and Casting of Expressions

Variables can be automatically promoted to a longer form (such as int
to long) when there would be no loss of information.

long bigval = 6; // 6 is an int type, OK
int smallval = 99L; // 99L is a long, illegal

double z = 12.414F; // 12.414F is float, OK
float z1 = 12.414; // 12.414 is double, illegal

In general, you can think of an expression as being assignment
compatible if the variable type is at least as large (the number of bits) as
the expression type.

4

Expressions and Flow Control 4-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Expressions

Promotion and Casting of Expressions (Continued)

For the + operator, when the two operands are of primitive numeric
types, the result is at least an int and has a value calculated by
promoting the operands to the result type or promoting the result to
the wider type of the operands. This might result in overflow or loss of
precision.

For example, the following code fragment:

short a, b, c;
a = 1;
b = 2;
c = a + b;

causes an error because it raises each short to an int before
operating on it. However, if c is declared as an int , or a typecast is
done as:

c = (short)(a + b);

then the code works.

4

4-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Branching Statements

Conditional statements allow for the selective execution of portions of
the program according to the value of some expressions. The Java
programming language supports the if and switch statements for
two-way and multiple-way branching, respectively.

if , else Statements

The basic syntax for if , else statements is:

if (boolean expression) {
statement or block;

}

if (boolean expression) {
statement or block;

} else if (boolean expression) {
statement or block;

} else {
statement or block;

}

4

Expressions and Flow Control 4-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Branching Statements

if, else Statements (Continued)

Example

int count;
count = getCount(); // a method defined in the program
if (count < 0) {

System.out.println("Error: count value is negative.");
} else if (count > getMaxCount()) {

System.out.println("Error: count value is too big.");
} else {

System.out.println("There will be " + count +
" people for lunch today.");

}

The Java programming language differs from C/C++ because an
if() takes a boolean expression, not a numeric value. You cannot
convert or cast boolean types and numeric types. If you have:

if (x) // x is int

use:

if (x != 0)

The entire else part is optional and you can omit it if no action is to be
taken when the tested condition is false.

4

4-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Branching Statements

switch Statement

The switch statement syntax is:

switch (expr1) {
 case constant2 :

statements ;
break;

 case constant3 :
statements ;
break;

default:
statements ;
break;

}

4

Expressions and Flow Control 4-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Branching Statements

switch Statement (Continued)

Note – In the switch (expr1) statement, expr1 must be assignment
compatible with an int type. Promotion occurs with byte , short , or
char types. Floating point, long expressions, or class references
(including Strings) are not permitted.

The optional default label is used to specify the code segment to be
executed when the value of the variable or expression cannot match
any of the case values. If there is no break statement as the last
statement in the code segment for a certain case , the execution
continues into the code segment for the next case without checking
the case expression’s value.

Example 1

switch (carModel) {
case DELUXE:

addAirConditioning();
addRadio();
addWheels();
addEngine();
break;

case STANDARD:
addRadio();
addWheels();
addEngine();
break;

default:
addWheels();
addEngine();

}

Example 1 configures a car object based on the carModel . If
carModel is the integer constant DELUXE, then A/C is added to the
car, as is a radio, and of course, wheels and an engine. However, if the
carModel is only a STANDARD, then only a radio, wheels, and an
engine are added.

4

4-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Branching Statements

switch Statements (Continued)

Example 2

switch (carModel) {
case THE_WORKS:

addGoldPackage();
add7WayAdjustableSeats();

case DELUXE:
addFloorMats();
addAirConditioning();

case STANDARD:
addRadio();
addDefroster();

default:
addWheels();
addEngine();

}

Example 2 solves the redundant method calls in the previous example
by allowing the flow of control descend through multiple case blocks.
For example, if the carModel is the THE_WORKS, then the gold package
and 7-way adjustable seats are adding to this car, plus floor mats, A/C,
a radio, the defroster, and of course, wheels and an engine. However,
if the carModel is only a STANDARD, then only a radio, defroster,
wheels, and an engine are added.

Note – Nine out of ten switch statements will need breaks in each
case block. Forgetting the break statement is the number one
programming error in using switch statements.

4

Expressions and Flow Control 4-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping Statements

Loop statements allow for the repeated execution of blocks of
statements. The Java programming language supports three types of
loop constructs: for , while , and do loops. for and while loops test
the loop condition before executing the loop body, whereas do loops
check the loop condition after executing the loop body. This implies
that the for and while loops might not execute the loop body even
once, whereas do loops execute the loop body at least once.

for Loops

The for loop syntax is:

for (init_expr; boolean testexpr; alter_expr3) {
statement or block ;

}

4

4-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping Statements

for Loops (Continued)

Example

for (int i = 0; i < 10; i++) {
 System.out.println("Are you finished yet?");
}
System.out.println("Finally!");

Note – The Java programming language allows the comma separator
in a for() loop structure. For example,
for (i = 0, j = 0; j < 10; i++, j++) { } is legal, and it
initializes both i and j to 0, and increments both i and j after
executing the loop body.

In the previous example, int i is declared and defined within the for
block. The variable i is accessible only within the scope of this
particular for block.

4

Expressions and Flow Control 4-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping Statements

while Loops

The while loop syntax is:

while (boolean) {
statement or block ;

}

Example

1 int i = 0;
2
3 while (i < 10) {
4 System.out.println("Are you finished yet?");
5 i++;
6 }
7 System.out.println("Done");

4

4-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping Statements

while Loops (Continued)

Ensure that the loop control variable is appropriately initialized before
the loop body begins execution, and ensure that the loop condition is
true to begin with. You must update the control variable appropriately
to prevent an infinite loop.

4

Expressions and Flow Control 4-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping Statements

do Loops

The syntax for the do loop is:

do {
statement or block ;

} while (boolean test);

Example

1 int i = 0;
2 do {
3 System.out.println("Are you finished yet?");
4 i++;
5 } while (i < 10);
6 System.out.println("Done");

As with the while loops, ensure that the loop control variable is
appropriately initialized, updated in the body of the loop, and
properly tested.

4

4-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping Statements

do Loops (Continued)

Use the for loop in cases where the loop is to be executed a
predetermined number of times. Use the while and do loops in cases
where this is not determined beforehand.

4

Expressions and Flow Control 4-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Special Loop Flow Control

You can use the following statements to further control loop
statements:

● break [label];

● continue [label];

● label: statement;// Where statement should be a loop

The break statement is used to prematurely exit from switch
statements, loop statements, and labeled blocks.

The continue statement is used to skip over and jump to the end of
the loop body.

The label statement identifies any valid statement to which control
needs to be transferred. It is used to identify a compound statement
that is a loop construct.

4

4-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Special Loop Flow Control

The break , continue , and label statements can be used as follows:

● The break statement:

do {
statement ;

 if (condition is true) {
break ;

}
statement ;

} while (boolean expression);

● The continue statement:

do {
 statement;

if (boolean expression) {
continue ;

}
 statement;
} while (boolean expression);

● The break statement with a label named outer:

outer :
 do {

statement;
 do {
 statement;

if (boolean expression) {
break outer ;

}
statement;

} while (boolean expression);
statement;

} while (boolean expression);

4

Expressions and Flow Control 4-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Special Loop Flow Control

● The continue statement with a label named test:

test:
 do {
 statement;
 do {
 statement;

if (condition is true) {
continue test ;

}
statement;

} while (condition is true);
statement;

} while (condition is true);

✓ Labeled break and continue statements are used to jump directly out of nested loops.
This facility removes one of the legitimate reasons for using goto . The Java programming
language does not use goto , although it is a reserved word.

Example

1 loop:while (true) {
2 for (int i = 0; i < 100; i++) {
3 switch (c = System.in.read()) {
4 case -1:
5 case ’\n’:
6 // jumps out of while loop to line 13
7 break loop;
8 ...
9 }
10 }
11 }
12
13 test:for (...) {
14 ...
15 while (...) {
16 if (j > 10) {
17 // jumps to the increment portion of for loop
18 // at line 13
19 continue test;
20 }
21 }
22 }

4

4-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Expressions

Exercise objective – You will write, compile, and run three programs
that use identifiers, expressions, and control structures.

Preparation

In order to successfully complete this lab, you must be able to compile
and run a Java program, and have a familiarity with flow control
constructs.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod04). A listing of this directory will show
three subdirectories: one for each of the exercises below.

Exercise 1: Use Loops and Branching Statements (Level 1)

In this exercise you will use a simple integer loop and branching
statements to play a fictitious game of “foo bar baz.”

Exercise 2: Conditionalize the withdraw Method (Level 2)

In this exercise you will modify the withdraw method to return a
boolean value to specify if the transaction was successful.

Exercise 3: Use Nested Loops (Level 3)

In this exercise you will use nested loops to implement a string search
operation.

4

Expressions and Flow Control 4-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Expressions

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

4

4-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Distinguish between instance and local variables

❑ Describe how instance variables are initialized

❑ Identify and correct a Possible reference before assignment
compiler error

❑ Recognize, describe, and use Java software operators

❑ Distinguish between legal and illegal assignments of primitive
types

❑ Identify boolean expressions and their requirements in control
constructs

❑ Recognize assignment compatibility and required casts in
fundamental types

❑ Use if , switch , for , while , and do constructions and the
labeled forms of break and continue as flow control structures
in a program

4

Expressions and Flow Control 4-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

What data types do most programming languages use to group similar
data elements together?

How do you perform the same operation on all elements of a group
(for example, a matrix)?

What data types does the Java programming language use?

5-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Arrays 5

Objectives

Upon completion of this module, you should be able to:

● Declare and create arrays of primitive, class, or array types

● Explain why elements of an array are initialized

● Explain how to initialize the elements of an array

● Determine the number of elements in an array

● Create a multi-dimensional array

● Write code to copy array values from one array type to another

This module describes how to define, initialize, and use arrays in the
Java programming language.

5

5-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
this question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● What is the purpose of an array?

✓ An array is often used to group similar data elements together, and perform the same
operation on all elements of the group (for example, a matrix). This module discusses the
Java programming language implementation of arrays, or groupings of similar elements.

✓ This module covers declaration and initialization of arrays, as well as their use.
Implementation of a multi-dimensional array as an array of arrays is examined. Use of
arrays’ built-in length attribute for bounds checking is also discussed.

5

Arrays 5-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Arrays

Arrays are typically used to group objects of the same type. Arrays
allow you to refer to the group of objects by a common name.

You can declare arrays of any type, either primitive or class:

char s[];
Point p[]; // where Point is a class

In the Java programming language, an array is an object even when
the array is made up of primitive types, and as with other class types,
the declaration does not create the object itself. Instead, the declaration
of an array creates a reference that you can use to refer to an array. The
actual memory used by the array elements is dynamically allocated
either by a new statement or by an array initializer.

The next section describes how to create and initialize the actual array.

5

5-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Declaring Arrays

The code shown on page page 5-3, with square brackets after the
variable name, is standard for C, C++, and the Java programming
language. This format leads to complex forms of declaration that can
be difficult to read. Therefore, the Java programming language allows
an alternative form with the square brackets on the left:

char [] s;
Point [] p;

The result is that you can consider a declaration as having the type
part at the left, and the variable name at the right. You will see both
formats used, but you should decide on one or the other for your own
use. The declarations do not specify the actual size of the array.

Note – When declaring arrays with the brackets to the left, the
brackets apply to all variables to the right of the brackets.

5

Arrays 5-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Arrays

You can create arrays, like all objects, using the new keyword. For
example, to create an array of a primitive (char) type you can do:

s = new char[26];

The first line creates an array of 26 char values. Once created, the
array elements are initialized to the default value (‘\u0000 ’ for
characters). You must fill in the array for it to be useful. For example:

s[0] = ‘A’;
s[1] = ‘B’;
...

The subscript used to index the individual array elements always
begins from 0, and must be maintained in the legal range—greater
than or equal to zero and less than the array length. Any attempt to
access an array element outside these bounds causes a runtime
exception. More elegant ways of initializing arrays are described in the
next section.

5

5-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Arrays

You can create arrays of objects as well. You would use the same
syntax:

p = new Point[10];

This line creates an array of 10 references of type Point . However, it
does not create 10 Point objects. These must be created separately as
follows:

p[0] = new Point(0, 1);
p[1] = new Point(1, 2);
...

5

Arrays 5-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Initializing Arrays

When you create an array, every element is initialized. In the case of
the char array s in the previous section, each value is initialized to
the zero (’\u0000’ - null) character. In the case of the array p, each
value is initialized to null , indicating that it does not (yet) refer to a
Point object. After the assignment p[0] = new Point() , the first
element of the array refers to a real Point object.

Note – Initializing all variables, including elements of arrays, is
essential to the security of the system. You must not use variables in an
uninitialized state.

The Java programming language allows a shorthand that creates
arrays with initial values:

String names[] = {
"Georgianna",
"Jen",
"Simon"

};

5

5-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Initializing Arrays

✓ Make sure students understand that in this example the names array has exactly three
elements.

This code is equivalent to:

String names[];
names = new String[3];
names[0] = "Georgianna";
names[1] = "Jen";
names[2] = "Simon";

You can use this shorthand for any element type. For example:

MyDate dates[] = {
new MyDate(22, 7, 1964),
new MyDate(1, 1, 2000),
new MyDate(22, 12, 1964)

};

5

Arrays 5-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Multi-Dimensional Arrays

The Java programming language does not provide multi-dimensional
arrays in the same way that other languages do. Because you can
declare an array to have any base type, you can create arrays of arrays
(and arrays of arrays of arrays, and so on). The following example
shows a two-dimensional array:

int twoDim [][] = new int [4][];
twoDim[0] = new int[5];
twoDim[1] = new int[5];

The object that is created by the first call to new is an array that
contains four elements. Each element is a null reference to an element
of type array of int and each element must be initialized separately
so that each element points to its array.

Note – Although the declaration format allows the square brackets to
be at the left or right of the variable name, this flexibility does not
carry over to other aspects of the array syntax. For example,
new int [][4] is not legal.

5

5-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Multi-Dimensional Arrays

Because of this separation, you can create non-rectangular arrays of
arrays. That is, you can initialize the elements of twoDim as follows:

twoDim[0] = new int[2];
twoDim[1] = new int[4];
twoDim[2] = new int[6];
twoDim[3] = new int[8];

Because this type of initialization is tedious, and the rectangular array
of arrays is the most common form, there is a shorthand to create two-
dimensional arrays. For example, you can use the following to create
an array of four arrays of five integers each:

int twoDim[][] = new int[4][5];

5

Arrays 5-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Array Bounds

In the Java programming language, all array indices begin at zero. The
number of elements in an array is stored as part of the array object, as
the length attribute. This value is used to perform bounds checking
of all runtime accesses. If an out-of-bounds access occurs, then a
runtime exception occurs.

Use the length attribute to iterate on an array as follows:

int list[] = new int [10];
for (int i = 0; i < list.length; i++) {

System.out.println(list[i]);
}

Using the length attribute makes program maintenance easier.

✓ Ask the students about the multi-dimensional example:

int multiDim[][] = new int [10][5];

System.out.println(“multiDim.length i s “ + multiDim.length);

System.out.println(“multiDim[0].length i s “ + multiDim[0].length);

5

5-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Array Resizing

Once created, an array cannot be resized. However, you can use the
same reference variable to refer to an entirely new array:

int myArray[] = new int[6];
myArray = new int[10];

In this case, the first array is effectively lost unless another reference to
it is retained elsewhere.

5

Arrays 5-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Copying Arrays

The Java programming language provides a special method in the
System class, arraycopy() , to copy arrays. For example, you can
use arraycopy() as follows:

1 // original array
2 int myArray[] = { 1, 2, 3, 4, 5, 6 };
3
4 // new larger array
5 int hold[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
6
7 // copy all of the myArray array to the hold
8 // array, starting with the 0th index
9 System.arraycopy(myArray, 0, hold, 0,
10 myArray.length);

At this point, the array hold has the following contents: 1, 2, 3, 4, 5, 6,
4, 3, 2, 1.

Note – System.arraycopy() copies references, not objects, when
dealing with arrays of objects. The objects themselves do not change.

5

5-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Arrays

Exercise objective – After defining and initializing arrays, you will
use them in a program. You will also use them to implement
multiplicity in an object association.

Preparation

To successfully complete this lab, you must understand basic matrix
concepts and know how to index an array to obtain its value.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod05). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Manipulate Arrays (Level 1)

In this exercise you will have hands-on experience in declaring,
creating, and manipulating one- and two-dimensional arrays of
primitive types.

Exercise 2: Use Arrays to Represent Multiplicity (Level 2)

In this exercise you will use arrays to implement the multiplicity on
the association between a bank and its customers.

5

Arrays 5-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Arrays

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

5

5-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Declare and create arrays of primitive, class, or array types

❑ Explain why elements of an array are initialized

❑ Explain how to initialize the elements of an array

❑ Determine the number of elements in any array

❑ Create a multi-dimensional array

❑ Write code to copy array values from one array type to another

5

Arrays 5-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

How can you create a three-dimensional array?

What is a disadvantage of using arrays?

6-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Inheritance 6

Objectives

Upon completion of this module, you should be able to:

● Define inheritance, polymorphism, overloading, overriding, and virtual
method invocation

● Use the access modifiers protected and "package-friendly"

● Describe constructor and method overloading

● Describe the complete object construction and initialization
operation

● In a Java program, identify the following:

▼ Overloaded methods and constructors

▼ The use of this to call overloaded constructors

▼ Overridden methods

▼ Invocation of super class methods

▼ Parent class constructors

▼ Invocation of parent class constructors

This module is the second of three modules that describe the object-
oriented paradigm and the object-oriented features of the Java
programming language.

6

6-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of this question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● How does the Java programming language support object
inheritance?

✓ The most important aspects of inheritance are code reuse, polymorphism, and virtual
method invocation.

6

Inheritance 6-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Subclassing

The is a Relationship

In programming you often create a model of something (for example,
an employee), and then need a more specialized version of that
original model. For example, you might want a model for a manager.
Clearly a manager actually is an employee, but an employee with
additional features.

Consider the following sample class declarations that demonstrate
this:

public class Employee {
public String name = "";
public double salary;
public Date birthDate;

 public String getDetails() {...}
}

6

6-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Subclassing

The is a Relationship (Continued)

public class Manager {
public String name = "";
public double salary;
public Date birthDate;
public String department;

 public String getDetails() {...}
}

This example illustrates the duplication of data between the Manager
class and the Employee class. Additionally, there could be a number of
methods applicable to both Employee and Manager . Therefore, you
need a way to create a new class from an existing class; this is called
subclassing.

6

Inheritance 6-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Subclassing

The is a Relationship (Continued)

In object-oriented languages, special mechanisms are provided that
allow the programmer to define a class in terms of a previously
defined class. In the Java technology programming language, this is
achieved by the keyword extends as follows:

public class Manager extends Employee {
 private String department = "";
}

6

6-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Subclassing

Single Inheritance

The Java programming language allows a class to extend only one
other class. This restriction is called single inheritance. The relative
merits of single and multiple inheritance are the subject of extensive
discussions among object-oriented programmers. The Java
programming language imposes the single inheritance restriction to
make the resulting code more reliable, although this sometimes makes
more work for the programmer. Module 7, "Advanced Class Features,"
examines a language feature called interfaces that allows most of the
benefits of multiple inheritance without suffering from any of its
drawbacks.

6

Inheritance 6-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Subclassing

Single Inheritance (Continued)

Figure 6-1 An Example Inheritance Tree

This example shows the base class Employee and three subclasses:
Engineer , Manager , and Secretary . The Manager is also subclassed
by Director .

The Employee class contains three attributes: name, salary , and
birthDate , as well as one method: getDetails . The Manager class
inherits all of these members and specifies an additional attribute,
department , and overrides the getDetails method. The Director
class inherits all of the members of Employee and Manager and
specifies a carAllowance attribute and a new method,
increaseAllowance .

Similarly, the Engineer and Secretary classes inherit the members of
the Employee class and might specify additional members (not
shown).

Manager

+department : String = ""

Employee

+name : String = ""

+salary : double

+birthDate : Date

Director

+carAllowance : double

Engineer Secretary

+getDetails() : String

+increaseAllowance()

6

6-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Subclassing

Constructors Are Not Inherited

Although a subclass inherits all of the methods and variables from a
parent class, it does not inherit constructors.

There are only two ways that a class can gain a constructor; either you
write the constructor, or, because you have not written any
constructors, the class has a single default constructor.

Note – A parent constructor is always called in addition to a child
constructor. This is discussed in detail later in this module.

6

Inheritance 6-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Describing a Manager as "is an" Employee is not just a convenient way
of describing the relationship between these two classes. Recall that
the Manager has all the members, both attributes and methods, of the
parent class Employee . This means that any operation that is
legitimate on an Employee is also legitimate on a Manager . If the
Employee has the method getDetails , then the Manager class does
also.

An object has only one form (the one that is given to it when
constructed). However, a variable is polymorphic because it can refer to
objects of different forms.

6

6-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

The Java programming language, like most object-oriented languages,
actually allows you to refer to an object with a variable that is one of
the parent class types. So you can say:

Employee employee = new Manager();

Using the variable employee as is, you can access only the parts of the
object that are part of Employee ; the Manager -specific parts are hidden.
This is because as far as the compiler is concerned, employee is an
Employee , not a Manager . Therefore, the following is not allowed:

// Illegal attempt to assign Manager attribute
employee.department = "Sales";
// the variable is declared as an Employee type,
// even though the Manager object has that attribute

harshit
Highlight

6

Inheritance 6-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Heterogeneous Collections

You can create collections of objects that have a common class. Such
collections are called homogenous collections.

The Java programming language has an Object class, so you can
make collections of all kinds of elements due to polymorphism,
because all classes extend class Object . Such collections are called
heterogeneous collections.

It might seem unrealistic to create a Manager and deliberately assign
the reference to it to a variable of type Employee . However, this is
possible and there are reasons why you might want to achieve this
effect.

6

6-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Heterogeneous Collections (Continued)

A heterogeneous collection is a collection of dissimilar things. In object-
oriented languages, you can create collections of many things. All have
a common ancestor class—the Object class. For example:

Employee [] staff = new Employee[1024];
staff[0] = new Manager();
staff[1] = new Employee();
staff[2] = new Engineer();

You can even write a sort method that puts the employees into age or
salary order, regardless of whether some are managers.

Note – Every class is a subclass of Object , so you can use an array of
Object as a container for any objects. The only items that cannot be
added to an array of Object are primitive variables. However, you can
create objects from primitive data using Wrapper classes, discussed on
page 6-44.

6

Inheritance 6-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Polymorphic Arguments

You can write methods that accept a “generic” object, in this case, the
class Employee , and work properly on objects of any subclass of this
object. You might produce a method in an application class that takes
an employee and compares it with a certain threshold salary to
determine the tax liability of that employee. Using the polymorphic
features, you can do this as follows:

// In the Employee class
public TaxRate findTaxRate(Employee e) {
 // do calculations and return a tax rate for e
}

// Meanwhile, elsewhere in the application class
Manager m = new Manager();
:
TaxRate t = findTaxRate(m);

This is legal, because a Manager is an Employee .

6

6-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Theinstanceof Operator

Given that you can pass objects around using references to their parent
classes, sometimes you might want to know what you actually have.
This is the purpose of the instanceof operator. Suppose the class
hierarchy is extended so that you have the following:

public class Employee extends Object
public class Manager extends Employee
public class Engineer extends Employee

Note – Remember that, while acceptable, extends Object is actually
redundant. It is shown here only as a reminder.

6

Inheritance 6-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Theinstanceof Operator (Continued)

If you receive an object using a reference of type Employee , it might
turn out to be a Manager or an Engineer . You can test it by using
instanceof as follows:

public void doSomething(Employee e) {
if (e instanceof Manager) {

 // Process a Manager
 } else if (e instanceof Engineer) {
 // Process a Engineer
 } else {
 // Process any other type of Employee
 }
}

Note – In C++ you can do something similar using runtime-type
information (RTTI), but instanceof in the Java programming
language is more powerful.

6

6-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Casting Objects

In circumstances where you have received a reference to a parent class,
and you have determined that the object is actually a particular
subclass by using the instanceof operator, you can restore the full
functionality of the object by casting the reference.

public void doSomething(Employee e) {
 if (e instanceof Manager) {
 Manager m = (Manager)e;

System.out.println(“ This is the manager of ” +
 m.getDepartment());
 }
 // rest of operation
}

If you do not make the cast, an attempt to execute
e.getDepartment() would fail, because the compiler cannot locate a
method called getDepartment in the Employee class.

6

Inheritance 6-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Polymorphism

Casting Objects (Continued)

If you do not make the test using instanceof , you run the risk of the
cast failing. Generally, any attempt to cast an object reference is
subjected to several checks:

● Casts “up” the class hierarchy are always permitted, and in fact do
not require the cast operator. They can be done by simple
assignment.

● For “downward” casts, the compiler must be satisfied that the cast
is at least possible. For example, any attempt to cast a Manager
reference to a Contractor reference is definitely not permitted,
because the Contractor is not a Manager . The class to which the
cast is taking place must be some subclass of the current reference
type.

● If the compiler allows the cast, then the object type is checked at
runtime. For example, if it turns out that the instanceof check is
omitted from the source, and the object being cast is not in fact an
object of the type it is being cast to, then a runtime error (exception)
occurs. Exceptions are a form of runtime error, and are the subject
of a later module.

6

6-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The has a Relationship

Objects can contain other objects. This is often called association or the
“has a” relationship. For example, a manager has a staff of employees.
An association is implemented in Java using a data attribute.

If multiplicity of an association is 1 (a “one-to-one” relationship), then
data attribute is a single reference to the object. For example, a vehicle
may only have one engine. Therefore, there is a one-to-one
relationship between the Vehicle and Engine classes.

However, if the multiplicity might be greater than one, then a
collection (possibly implemented as an array) should be used. The
staff association is a one-to-many relationship between the manager
and his set of employees.

6

Inheritance 6-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Access Control

Variables and methods can be at one of four access levels; public ,
protected , default, or private . Classes can be at the public or default
level.

A variable, method, or class has default accessibility if it does not have
an explicit protection modifier as part of its declaration. Such
accessibility means that access is permitted from any method in classes
that are members of the same package as the target. This is often called
"package-friendly."

A variable or method marked with the modifier protected is actually
more accessible than one with default access control. A protected
method or variable is accessible from methods in classes that are
members of the same package and from any method in any subclass.
You should use the protected access when it is appropriate for a class’s
subclass, but not unrelated classes.

Note – Protected access is provided to subclasses that reside in a
different package from the class that owns the protected feature.

✓ A design that makes extensive use of protected or default access elements is probably
either very well designed or very poorly designed.

✓ protected is particularly useful in JavaBeans. Introspection works only on public
methods; protected allows member variables to be accessed by subclasses and is
invisible to the introspector.

Table 6-1 Accessibility Criteria

Modifier Same Class Same Package Subclass Universe

public Yes Yes Yes Yes

protected Yes Yes Yes

default Yes Yes

private Yes

harshit
Highlight

harshit
Highlight

6

6-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overloading Method Names

In some circumstances, you might want to write several methods in
the same class that do basically the same job with different arguments.
Consider a simple method that is intended to output a textual
representation of its argument. This method could be called
println() .

Now suppose that you need a different print method for printing each
of the int , float , and String types. This is reasonable, because the
various data types require different formatting, and probably varied
handling. You could create three methods, called printInt() ,
printFloat() , and printString() , respectively. However, this is
tedious.

The Java programming language, along with several other
programming languages, allows you to reuse a method name for more
than one method. This works only if there is something in the
circumstances under which the call is made that distinguishes the
method that is actually needed. In the case of the three print methods,
this distinction is based on the number and type of the arguments.

6

Inheritance 6-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overloading Method Names

By reusing the method name, you end up with the following methods:

public void println(int i)
public void println(float f)
public void println()

When you write code to call one of these methods, the appropriate
method is chosen according to the type of argument or arguments you
supply.

Two rules apply to overloaded methods:

● The argument lists of the calling statement must differ enough to
allow unambiguous determination of the proper method to call.
Normal widening promotions (for example, float to double)
might be applied; this can cause confusion under some conditions.

● The return type of the methods can be different, but it is not
sufficient for the return type to be the only difference. The
argument lists of overloaded methods must differ.

6

6-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overloading Constructors

When an object is instantiated, the program might want to supply
multiple constructors based on what data is known about the object
being created. For example, a payroll system might want to create an
Employee object when it knows all of the basic data about the person:
name, starting salary, and date of birth. Sometimes the system may not
know the starting salary or the date of birth.

1 public class Employee {
2 private static final double BASE_SALARY = 15000.00;
3 private String name;
4 private double salary;
5 private Date birthDate;
6
7 public Employee(String name, double salary, Date DoB) {
8 this.name = name;
9 this.salary = salary;
10 this.birthDate = DoB;
11 }

6

Inheritance 6-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overloading Constructors

12 public Employee(String name, double salary) {
13 this(name, salary, null);
14 }
15 public Employee(String name, Date DoB) {
16 this(name, BASE_SALARY, DoB);
17 }
18 public Employee(String name) {
19 this(name, BASE_SALARY);
20 }
21 // more Employee code...
22 }

In the code fragment above, we have coded four, overloaded
constructors. The first one (lines 7-11) initializes all instance variables.
In the second one (lines 12-14), the date of birth is not provided. Notice
the use of the this reference: It is being used as a forwarding call to
another constructor (always within the same class); in this case the first
constructor. Likewise, the third constructor (lines 15-17) calls the first
constructor passing in the class constant BASE_SALARY. The fourth
constructor (lines 18-20) calls the second constructor passing the
BASE_SALARYwhich in turn calls the first constructor passing null for
the date of birth.

Note – The this command in a constructor must be the first line of
code in the constructor. There may be more initialization code after the
this call, but not before.

6

6-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overriding Methods

In addition to being able to produce a new class based on an old one
by adding additional features, you can modify existing behavior of the
parent class.

If a method is defined in a subclass such that the name, return type,
and argument list exactly match those of a method in the parent class,
then the new method is said to override the old one.

Note – Remember that methods with the same name, but with
different argument lists in the same class, are simply overloaded. This
causes the compiler to use the supplied arguments to determine which
method to call.

6

Inheritance 6-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overriding Methods

Consider these sample methods in the Employee and Manager classes:

public class Employee {
 protected String name;

protected double salary;
protected Data birthDate;

 public String getDetails() {
return “ Name: “ + name + “ \n ” +

“Salary: “ + salary;
 }
}

public class Manager extends Employee {
protected String department;

public String getDetails() {
return “ Name: “ + name + “ \n ” +

“Salary: “ + salary + “ \n ” +
“ Manager of “ + department;

 }
}

The Manager class has a getDetails() method by definition because
it inherits one from the Employee class. However, the original method
has been replaced, or overridden, by the child class’s version.

6

6-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overriding Methods

Assume that the example on the previous page and the following
scenario are true:

Employee e = new Employee();
Manager m = new Manager();

If you ask for e.getDetails() and m.getDetails() , you invoke
different behaviors. The Employee object executes the version of
getDetails() associated with the Employee class, and the Manager
object executes the version of getDetails() associated with the
Manager class.

What is less obvious is what happens if you have:

Employee e = new Manager();
e.getDetails();

or some similar effect, such as a general method argument or an item
from a heterogeneous collection.

6

Inheritance 6-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Overriding Methods

In fact, you get the behavior associated with the runtime type of the
variable (that is, the type of the object referred to by the variable), not
the behavior associated with the compile time type of the variable.
This is an important feature of object-oriented languages. It is also
another important feature of polymorphism and is often referred to as
virtual method invocation.

In the previous example, the e.getDetails() method executed is
from the object’s real type, a Manager .

Note – If you are a C++ programmer, there is an important distinction
to be drawn between the Java programming language and C++. In
C++ you get this behavior only if you mark the method as virtual in
the source. In “pure” object-oriented languages, however, this is not
normal. C++ does this to increase execution speed.

6

6-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Invoking Overridden Methods

Rules About Overridden Methods

Remember that the method name, and order of arguments of a child
method must be identical to those of the method in the parent class for
that method to override the parent’s version. The following rules
apply to overridden methods:

● The return type of the overriding method must be identical to the
method it overrides.

● An overriding method cannot be less accessible than the method it
overrides.

Note – An overriding method cannot throw different types of
exceptions than the method it overrides. This will be discussed in
more detail in Module 8, "Exceptions."

6

Inheritance 6-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Invoking Overridden Methods

Rules About Overridden Methods (Continued)

These rules result from the nature of polymorphism combined with
the need for the Java programming language to be “typesafe.”
Consider this invalid scenario:

public class Parent {
public void doSomething() {

 }
}

public class Child extends Parent {
private void doSomething() {

 }
}

public class UseBoth {
 public void doOtherThing() {
 Parent p1 = new Parent();

Parent p2 = new Child();
 p1.doSomething();

p2.doSomething();
 }
}

The Java programming language semantics dictate that p2.method()
results in the Child version of method being executed, but because
the method is declared private , p2 (declared as Parent) cannot
access it. Thus, the language semantics are violated.

✓ This code fails at compile time, in spite of the fact that true type resolution takes effect at
runtime.

6

6-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Invoking Overridden Methods

The super Keyword

The super keyword refers to the superclass of the class in which the
keyword is used. It is used to refer to the member variables or the
methods of the superclass.

Quite often when you override a method, your real goal is not to
replace the existing behavior but to extend that behavior in some way.

6

Inheritance 6-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Invoking Overridden Methods

The super Keyword (Continued)

This can be achieved using the keyword super as follows:

public class Employee {
 private String name;
 private double salary;
 private Date birthDate;

 public String getDetails() {
 return "Name: " + name + "\nSalary: " + salary;
 }
}

public class Manager extends Employee {
 private String department;

 public String getDetails() {
 // call parent method
 return super.getDetails () +

"\nDepartment: " + department;
}

}

A call of the form super. method () invokes the entire behavior,
along with any side effects, of the method that would have been
invoked if the object had been of the parent class type. The method
does not have to be defined in that parent class; it could be inherited
from some class even further up the hierarchy.

Note – In the previous example, member variables have been declared
as private . This is not necessary but is generally good programming
practice.

6

6-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Invoking Parent Class Constructors

Like methods, constructors can call the non-private constructors of its
immediate superclass.

Often you define a constructor that takes arguments and you want to
use those arguments to control the construction of the parent part of
an object. You can invoke a particular parent class constructor as part
of a child class initialization by “calling” the keyword super from the
child constructor’s first line. To control the invocation of the specific
constructor, you must provide the appropriate arguments to super() .
When there is no call to super with arguments, the default parent
constructor (that is, the constructor with zero arguments) is called
implicitly. In this case, if there is no default parent constructor, a
compiler error results.

Note – The call to super() can take any number of arguments
appropriate to the various constructors available in the parent class,
but it must be the first statement in the constructor.

6

Inheritance 6-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Invoking Parent Class Constructors

Assuming that the Employee class has the set of constructors that were
defined in the ‘‘Overloading Constructors’’ section on page 6-22, then
the following constructors in Manager might be defined. Note that the
constructor on line 12 is illegal because the compiler inserts an implicit
call to super() and the Employee class has not provided a constructor
with no arguments.

1 public class Manager extends Employee {
2 private String department;
3
4 public Manager(String name, double salary, String dept) {
5 super(name, salary) ;
6 department = dept;
7 }
8 public Manager(String n, String dept) {
9 super(name) ;
10 department = dept;
11 }
12 public Manager(String dept) { // This code fails: no super()
13 department = d;
14 }
15 }

When used, you must place super or this in the first line of the
constructor. If you write a constructor that has neither a call to
super(...) nor this(...) , the compiler automatically inserts a
call to the parent class constructor with no arguments. Other
constructors can also call super(...) or this(...) , invoking a
chain of constructors. What ultimately happens is the parent class
constructor (or possibly several) executes before any child class
constructor in the chain.

6

6-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects: A Slight Reprise

Object initialization is a rather complex process. In "Constructing and
Initializing Objects" on page 3-21 in Module 3, "Identifiers, Keywords,
and Types," you were exposed to a very rudimentary explanation. In
this section you will see the whole process.

First, the memory for the complete object is allocated and the default
values for the instance variables are assigned. Second, the top-level
constructor is called and follows these steps recursively down the
inheritance tree:

1. Bind constructor parameters.

2. If explicit this() , call recursively and then skip to step 5.

3. Call recursively the implicit or explicit super(...) , except for
Object because Object has no parent class.

4. Execute explicit instance variable initializers.

5. Execute body of current constructor.

6

Inheritance 6-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects: A Slight Reprise

For an example, we will use the following code for the Manager and
Employee classes:

public class Object {
...
public Object() {}
...

}

public class Employee extends Object {
 private String name;
 private double salary = 15000.00;
 private Date birthDate;

 public Employee(String n, Date DoB) {
 // implicit super();
 name = n;
 birthDate = DoB;
 }
 public Employee(String n) {
 this(n, null);
 }
}

public class Manager extends Employee {
 private String department;

 public Manager(String n, String d) {
super(n);

 department = d;
 }
}

6

6-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects: A Slight Reprise

The following are the steps to construct new Manager("Joe Smith",
"Sales") :

0 basic initialization

 0.1 allocate memory for the completeManager object

 0.2 initialize all instance variables to their default values (0 or null)

1 call constructor:Manager("Joe Smith", "Sales")

 1.1 bind constructor parameters:n="Joe Smith", d="Sales"

 1.2 no explicitthis() call

 1.3 call super(n) for Employee(String)

 1.3.1 bind constructor parameters:n="Joe Smith"

 1.3.2 call this(n, null) for Employee(String, Date)

 1.3.2.1 bind constructor parameters:n="Joe Smith", DoB=null

 1.3.2.2 no explicitthis() call

 1.3.2.3 call super() for Object()

 1.3.2.3.1 no binding necessary

 1.3.2.3.2 no this() call

 1.3.2.3.3 nosuper() call (Object is the root)

 1.3.2.3.4 no explicit variable initialization forObject

 1.3.2.3.5 no method body to call

 1.3.2.4 initialize explicitEmployee variables:salary=15000.00;

 1.3.2.5 execute body:name="Joe Smith"; date=null;

 1.3.3 - 1.3.4 steps skipped

 1.3.5 execute body: no body inEmployee(String)

 1.4 no explicit initializers forManager

 1.5 execute body:department="Sales"

6

Inheritance 6-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects: A Slight Reprise

Implications of the Initialization Process

Suppose the Employee class was defined as follows:

1 public class Employee extends Object {
2 private String name;
3 private double salary = 15000.00;
4 private Date birthDate;
5 private String summary;
6
7 public Employee(String n, Date DoB) {
8 name = n;
9 birthDate = DoB;
10 summary = getDetails();
11 }
12 public Employee(String n) {
13 this(n, null);
14 }
15
16 public String getDetails() {
17 return "Name: " + name + "\nSalary: " + salary
18 + "\nBirth Date: " + birthDate;
19 }
20 }

Notice that the summary data attribute is being initialized to the details
of the employee (line 10).

6

6-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Constructing and Initializing Objects: A Slight Reprise

Implications of the Initialization Process (Continued)

And the Manager class as:

1 public class Manager extends Employee {
2 private String department;
3
4 public Manager(String n, String d) {
5 super(n);
6 department = d;
7 }
8
9 public String getDetails() {
10 return super.getDetails() + "\nDept: " + department;
11 }
12 }

Notice that the getDetails method is being overridden (line 9-11)
and that the parent constructor is being called (line 5).

The problem arises from the virtual method invocation in the
Employee constructor on line 10. If a Manager object is being
constructed, then the getDetails method on line 8 is called which
uses the department attribute before it have been initialized (line 5).

This example is not too awful because the department attribute will
be added to the details string as “Dept: null ”. However, if the
getDetails method had called a method on an object that had not
been initialized, then an exception would have been thrown which
might cause the program to halt.

As a rule of thumb: If you must call a method in a constructor make
that method private.

6

Inheritance 6-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Object Class

The Object class is the root of all classes in the Java technology
programming language. If a class is declared with no extends clause,
then the compiler implicitly adds "extends Object " to the
declaration. For example:

public class Employee {
 ...
}

is equivalent to:

public class Employee extends Object {
 ...
}

This allows you to override several methods inherited from the
Object class. The following sections discuss two important Object
methods.

✓ Encourage students to review the Object class in the API documentation.

6

6-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The == Operator Compared With the equals Method

The == operator performs an equivalent comparison. That is, for any
reference values x and y, x==y returns true if and only if x and y refer
to the same object.

The Object class in the java.lang package has the method
public boolean equals(Object obj) , which compares two
objects for equality. When not overridden, an object’s equals()
method returns true only if the two references being compared refer
to the same object. However, the intention of the equals() method is
to compare the contents of two objects whenever possible. This is why
the method is frequently overridden. For example, the equals()
method in String class returns true if and only if the argument is
not null and is a String object that represents the same sequence of
characters as the String object with which the method is invoked.

Note – It is recommended that you override the hashCode method
whenever you override the equals method. A decent, but naive,
implementation could use a bitwise XOR on the hash codes of the
elements tested for equality.

6

Inheritance 6-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The == Operator Compared With the equals Method

Example

In this example, the Employee class has been modified to include an
equals method that tests against the employee name and date of birth.

1 class Employee {
2
3 private String name;
4 private MyDate birthDate;
5 private float salary;
6
7 // Constructor
8 public Employee(String name, MyDate DoB, float salary) {
9 this.name = name;
10 this.birthDate = DoB;
11 this.salary = salary;
12 }
13
14 public boolean equals(Object o) {
15 boolean result = false;
16 if ((o != null) && (o instanceof Employee)) {
17 Employee e = (Employee) o;
18 if (name.equals(e.name) && birthDate.equals(e.birthDate)) {
19 result = true;
20 }
21 }
22 return result;
23 }
24
25 public int hashCode() {
26 return (name.hashCode() ̂ birthDate.hashCode());
27 }
28 }

We overrode the hashCode method that implements a bitwise XOR of
the hash codes for the name string and the birthDate date. This will
guarantee that hash code for equal Employee objects will have the
same value.

✓ Implementing an efficient hash code algorithm is non-trivial, but a decent implementation
must guarantee that two "equal" objects have the same hash value.

6

6-42 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The == Operator Compared With the equals Method

Example (Continued)

The following program tests two Employee objects that are not
identical, but are equal relative to the name/birthdate test.

1 class TestEquals {
2 public static void main(String[] args) {
3 Employee emp1 = new Employee("Fred Smith",
4 new MyDate(14, 3, 1976),
5 25000.0F);
6 Employee emp2 = new Employee("Fred Smith",
7 new MyDate(14, 3, 1976),
8 25000.0F);
9
10 if (emp1 == emp2) {
11 System.out.println("emp1 is identical to emp2");
12 } else {
13 System.out.println("emp1 is not identical to emp2");
14 }
15
16 if (emp1.equals(emp2)) {
17 System.out.println("emp1 is equal to emp2");
18 } else {
19 System.out.println("emp1 is not equal to emp2");
20 }
21
22 emp2 = emp1;
23 System.out.println("set emp2 = emp1;");
24 if (emp1 == emp2) {
25 System.out.println("emp1 is identical to emp2");
26 } else {
27 System.out.println("emp1 is not identical to emp2");
28 }
29 }
30 }
31

The execution of this test program generates the following output:

emp1 is not identical to emp2
emp1 is equal to emp2
set emp2 = emp1;
emp1 is identical to emp2

6

Inheritance 6-43
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The toString Method

The toString method is used to convert an object to a String
representation. It is referenced by the compiler when automatic string
conversion takes place. For example, the System.out.println() call:

Date now = new Date();
System.out.println(now);

is roughly equivalent to:

System.out.println(now.toString());

The Object class defines a default toString method that returns the
class name and its reference address (not normally useful). Many
classes override toString to provide more useful information. For
example, all wrapper classes (introduced later in this module) override
toString to provide a string form of the value they represent. Even
classes representing items without a string form often implement
toString to return object state information for debugging purposes.

6

6-44 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Wrapper Classes

The Java programming language does not look at primitive data types
as objects. For example, numerical, boolean, and character data are
treated in the primitive form for the sake of efficiency. The Java
programming language provides wrapper classes to manipulate
primitive data elements as objects. Such data elements are “wrapped”
in an object created around them. Each Java primitive data type has a
corresponding wrapper class in the java.lang package. Each wrapper
class object encapsulates a single primitive value. (See Table 6-2.)

Note – These wrapper classes implement immutable objects. That
means that once the primitive value is initialized in the wrapper
object, then there is no means to change that value.

6

Inheritance 6-45
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Wrapper Classes

You can construct a wrapper class object by passing the value to be
wrapped into the appropriate constructor. For example:

int pInt = 500;
Integer wInt = new Integer(pInt);
int p2 = wInt.intValue();

✓ It can also be constructed by passing a string that represents a value to be wrapped. If the
string does not represent a valid value, a NumberFormatException is thrown, except in
the case of a boolean . Wrapped values can be extracted as a numeric type using the
appropriate call. For example, a long value can be extracted using public long
longValue() .

Wrapper classes are useful when converting primitive data types
because of the many wrapper class methods available. For example:

int x = Integer.valueOf(str).intValue();

or:

int x = Integer.parseInt(str);

Table 6-2 Wrapper Classes

Primitive Data Type Wrapper Class

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

6

6-46 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Objects and Classes

Exercise objective – You will write, compile, and run a program that
uses inheritance to implement two types of bank accounts. You will
write, compile, and run a program that uses a heterogeneous
collection of objects.

Preparation

To successfully complete this lab, you must understand the concepts of
inheritance, polymorphism, method overriding, and heterogeneous
collections.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod06). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Create Subclasses of Bank Accounts (Level 1)

In this exercise you will create two subclasses of the Account class in
the Banking project: SavingsAccount and CheckingAccount .

✓ For more advanced students use the alternate exercise #1. This lab can be found in the
alternate1 directory.

Exercise 2: Use a Heterogeneous Collection (Level 2)

In this exercise you will create a heterogeneous array to represent the
aggregation of customers to accounts. That is, a given customer may
have several accounts of different types.

6

Inheritance 6-47
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Objects and Classes

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

6

6-48 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Define inheritance, polymorphism, overloading, overriding, and virtual
method invocation

❑ Use the access modifiers protected and "package-friendly"

❑ Describe constructor and method overloading

❑ Describe the complete object construction and initialization
operation

❑ In a Java program, identify the following:

▼ Overloaded methods and constructors

▼ The use of this to call overloaded constructors

▼ Overridden methods

▼ Invocation of super class methods

▼ Parent class constructors

▼ Invocation of parent class constructors

6

Inheritance 6-49
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

Now that you understand inheritance and polymorphism, how can
you use this information on a current or future project?

7-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AdvancedClassFeatures 7

Objectives

Upon completion of this module, you should be able to:

● Describe static variables, methods, and initializers

● Describe final classes, methods, and variables

● Explain how and when to use abstract classes and methods

● Explain how and when to use inner classes

● Distinguish between static and non-static inner classes

● Explain how and when to use an interface

● In a Java software program, identify:

▼ static methods and attributes

▼ final methods and attributes

▼ inner classes

▼ interface and abstract classes

▼ abstract methods

This module completes the discussion on the object-oriented features
of the Java technology programming language.

7

7-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● How can you create a constant?

● How can you create an instance variable that is set once and can
not be reset, even internally?

● How can you declare data that is shared by all instances of a given
class?

● How can you keep a class or method from being subclassed or
overridden?

● How can you create several classes that implement a common
interface yet not be part of a common inheritance tree?

✓ A programmer needs to know all of the object-oriented features of the Java programming
language in order to fully use the language’s object-oriented power. This module
discusses additional features of the language, picking up where the last module
left off.

✓ Topics in this module are more advanced. It includes a discussion of inner classes;
interfaces; abstract class; and the keywords static and final . Knowledge of these
language features greatly helps in the implementation of well-written Java software
programs.

7

Advanced Class Features 7-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

The static keyword is used to declare members (attributes, methods,
and inner classes) that are associated with the class rather than the
instances of the class.

The following sections describe the most common uses of the static
keyword: class variables and class methods. The discussion of static
inner classes comes later in this module.

7

7-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Class Attributes

Sometimes it is desirable to have a variable that is shared among all
instances of a class. For example, this can be used as the basis for
communication between instances or to keep track of the number of
instances that have been created.

You achieve this effect by marking the variable with the keyword
static . Such a variable is sometimes called a class variable to
distinguish it from a member or instance variable, which is not shared.

1 public class Count {
2 private int serialNumber;
3 public static int counter = 0;
4
5 public Count() {
6 counter ++;
7 serialNumber = counter;
8 }
9 }

7

Advanced Class Features 7-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Class Attributes (Continued)

In this example, every object that is created is assigned a unique serial
number, starting at 1 and counting upwards. The variable counter is
shared among all instances, so when the constructor of one object
increments counter , the next object to be created receives the
incremented value.

A static variable is similar in some ways to a global variable in
other languages. The Java programming language does not have
globals as such, but a static variable is a single variable accessible
from any instance of the class.

If a static variable is not marked as private , you can access it from
outside the class. To do this, you do not need an instance of the class,
you can refer to it through the class name.

1 public class OtherClass [
2 public void incrementNumber() {
3 Count.counter ++;
4 }
5 }

7

7-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Class Methods

Sometimes you need to access program code when you do not have an
instance of a particular object available. A method that is marked
using the keyword static can be used in this way and is sometimes
called a class method.

1 public class Count {
2 private int serialNumber;
3 private static int counter = 0;
4
5 public static int getTotalCount() {
6 return counter;
7 }
8
9 public Count() {
10 counter++;
11 serialNumber = counter;
12 }
13 }

You should access methods that are static using the class name rather
than an object reference, as follows:

1 public class TestCounter {
2 public static void main(String[] args) {
3 System.out.println(" Number of counter is "
4 + Count.getTotalCount());
5 Count count1 = new Count();
6 System.out.println(" Number of counter is "
7 + Count.getTotalCount());
8 }
9 }

The output of the TestCounter program is:

Number of counter is 0
Number of counter is 1

7

Advanced Class Features 7-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Class Methods (Continued)

Because you can invoke a static method without any instance of the
class to which it belongs, there is no this value. The consequence is
that a static method cannot access any variables apart from the local
variables, static attributes, and its parameters. Attempting to access
non-static attributes causes a compiler error.

Note – Non-static attributes are bound to an instance and can be
accessed only through instance references.

1 public class Count {
2 private int serialNumber;
3 private static int counter = 0;
4
5 public static int getSerialNumber() {
6 return serialNumber; // COMPILER ERROR!
7 }
8 }

Important points to remember about static methods are:

● A static method cannot be overridden.

● main() is static because the JVM does not create an instance of
the class when executing the main method. So if you have member
data, you must create an object to access it.

7

7-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Static Initializers

It is perfectly valid for a class to contain code in a “static block” that
does not exist within a method body. The static block code executes
only once, when the class is loaded. Different static blocks within a
class are executed in the order of their appearance in the class.

1 public class Count {
2 public static int counter;
3 static {
4 counter = Integer.getInteger("myApp.Count.counter").intValue();
5 }
6 }
7
8 public class TestStaticInit {
9 public static void main(String[] args) {
10 System.out.println("counter = "+ Count.counter);
11 }
12 }

7

Advanced Class Features 7-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Static Initializers (Continued)

Note – The code on line 4 of the StaticInit class uses a static method
on the Integer class getInteger(String) , which returns an
Integer object that represents the value of a system property. This
property, named myApp.Count.counter , is set on the command-line
using the -D option. The intValue method on the Integer object
returns the value as an int .

The result is the following:

> java -DmyApp.Count.counter=47 TestStaticInit
counter = 47

7

7-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Implementing the Singleton Design Pattern

Recall the shipping application from "Analysis and Design" on
page 2-5. There was a requirement that the system deal with only one
"company." If the software were written carelessly, it would be possible
for the system to create two company objects each with a different fleet
of vehicles. This is a problem that is addressed by the Singleton design
pattern. The goal of the Singleton is to ensure that—throughout the
software system—only one instance of a given class exists and that
there is a single point of access to that object.

Figure 7-1 shows the generic model of the Singleton design pattern.

Figure 7-1 The Generic Singleton Design Pattern Model

✓ Design patterns are solutions to common problems in OO design and they are
implementation-independent. Visit http://hillside.net/patterns/ for more information.

Figure 7-2 demonstrates how the Company class can implement the
Singleton design pattern. In particular, we have used a private class
attribute instance that is initialized to an instance of Company. We
have used public class method getCompany to access that single
instance. The constructor is private to ensure that no other client code
can construct a new company object.

Figure 7-2 The Company Class Implements the Singleton Pattern

Singleton

- instance : Singleton

+getInstance() : Singleton

ClientClass
<<Uses>>

- Singleton()

shipping

reports domain

Company
- instance : Company

+getCompany() : Company

FuelNeedsReport
<<Uses>>

-name : String
-vehicles : List

+getName() : String
+getVehicles : List

- Company()

7

Advanced Class Features 7-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The static Keyword

Implementing the Singleton Design Pattern (Continued)

The following code fragment implements the Singleton pattern as
modeled in the diagram above:

1 package shipping.domain;
2
3 public class Company {
4 private static Company instance = new Company();
5 private String name;
6 private Vehicle[] fleet;
7
8 public static Company getCompany() {
9 return instance;
10 }
11
12 private Company() {...}
13
14 // more Company code ...
15 }

The following code fragment demonstrate how to use the Singleton
object:

1 package shipping.reports;
2
3 import shipping.domain.*;
4
5 public class FuelNeedsReport {
6 public void generateText(PrintStream output) {
7 Company c = Company.getCompany();
8 // use Company object to retrieve the fleet vehicles
9 }
10 }

7

7-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The final Keyword

Final Classes

The Java programming language allows you to apply the keyword
final to classes. If this is done, the class cannot be subclassed. For
example, the class java.lang.String is a final class. This is done
for security reasons, because it ensures that if a method has a reference
to a string, it is definitely a string of class String and not a string of a
class that is a modified subclass of String that might have been
maliciously changed.

7

Advanced Class Features 7-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The final Keyword

Final Methods

You can also mark individual methods as final . Methods marked
final cannot be overridden. This is done for security reasons. You
should make a method final if the method has an implementation
that should not be changed and is critical to the consistent state of the
object.

Methods declared final are sometimes used for optimization. The
compiler can generate code that causes a direct call to the method,
rather than the usual virtual method invocation that involves a
runtime lookup.

Methods marked as static or private are final automatically
because dynamic binding cannot be applied in either case.

7

7-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The final Keyword

Final Variables

If a variable is marked as final , the effect is to make it a constant.
Any attempt to change the value of a final variable causes a compiler
error. The following example shows a properly defined final
variable:

public class Bank {
private static final double DEFAULT_INTEREST_RATE=3.2;
... // more declarations

}

✓ Final variables are roughly equivalent to const in C and C++.

Note – If you mark a variable of reference type (that is, any class type)
as final , that variable cannot refer to any other object. However, you
can change the object’s contents, because only the reference itself is
final .

A "blank final variable" is a final variable that is not initialized in its
declaration. The initialization is delayed. Typically, a blank final
instance variable should be assigned in a constructor. A blank final
local variable can be set at any time in the body of the method, but it
can only be set once. The code fragment below is an example of how a
blank final variable can be used in a class:

public class Customer {
private final long customerID;

 public Customer() {
customerID = createID() ;

 }

public long getID() {
return customerID;

}
private long createID() {

return ... // generate new ID
}
... // more declarations

}

7

Advanced Class Features 7-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With the static and final Keywords

Exercise objective – You will rewrite, compile, and run a program
that use the bank account model and employ the static and final
keywords.

Preparation

To successfully complete this lab, you must be familiar with the use of
the static and final keywords and the Singleton design pattern.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod07). A listing of this directory will show
two subdirectories. This exercise is found in the directory called
exercise1 .

Exercise 1: Use the Singleton Design Pattern (Level 2)

In this exercise you will modify the Bank class to implement the
Singleton design pattern.

7

7-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With The static and final Keywords

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

7

Advanced Class Features 7-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Abstract Classes

The Scenario

In our shipping example, suppose that the system needed to supply a
weekly report that lists each vehicle in the company’s fleet and the fuel
needs for their up-coming trips. Let’s assume that the Shipping System
has a ShippingMain class that populates the company’s vehicle fleet
list and generates the “Fuel Needs” report.

1 public class ShippingMain {
2 public static void main(String[] args) {
3 Company c = Company.getCompany();
4
5 // populate the company with a fleet of vehicles
6 c.addVehicle(new Truck(10000.0));
7 c.addVehicle(new Truck(15000.0));
8 c.addVehicle(new RiverBarge(500000.0));
9 c.addVehicle(new Truck(9500.0));
10 c.addVehicle(new RiverBarge(750000.0));
11
12 FuelNeedsReport report = new FuelNeedsReport();
13 report.generateText(System.out);
14 }
15 }

✓ Point out that the company fleet is a heterogeneous collection of vehicles. Virtual method
invocation is the key to this example.

Figure 7-3 shows the UML model of the Company and its
heterogeneous collection of vehicles (the fleet association).

Figure 7-3 UML Model of the Company Fleet

Vehicle

RiverBargeTruck

Company fleet 0..*

shipping

domainShippingMain
<<Uses>>

FuelNeedsReport
<<Uses>>

reports

7

7-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Abstract Classes

The Scenario (Continued)

You would like to be able to write the report code as follows:

1 public class FuelNeedsReport {
2 public void generateText(PrintStream output) {
3 Company c = Company.getCompany();
4 Vehicle v;
5 double fuel;
6 double total_fuel = 0.0;
7
8 for (int i = 0; i < c.getFleetSize(); i++) {
9 v = c.getVehicle(i);
10
11 // Calculate the fuel needed for this trip
12 fuel = v.calcTripDistance() / v.calcFuelEfficency() ;
13
14 output.println("Vehicle " + v.getName() + " needs "
15 + fuel + " liters of fuel.");
16 total_fuel += fuel;
17 }
18 output.println("Total fuel needs is " + total_fuel + " liters.");
19 }
20 }

The “fuel needed” calculation is the trip distance (in kilometers)
divided by the vehicle’s fuel efficiency (in kilometers/liter).

The Problem

The calculations to determine fuel efficiency of a truck as compared
with a river barge might be radically different. The Vehicle class can
not supply these two methods, but its subclasses (Truck and
RiverBarge) can.

✓ I have not supplied a slide for presenting “The Problem” because it would simply replicate
the words used above.

7

Advanced Class Features 7-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Abstract Classes

The Solution

The Java language allows a class designer to specify that a superclass
declares a method that does not supply an implementation. The
implementation of this method is supplied by the subclasses. This is
called an abstract method. Any class with one or more abstract methods
is called an abstract class.

Figure 7-4 UML Model of the Abstract Vehicle Class

Figure 7-4 presents a UML model of the solution. Vehicle is an
abstract class with two public, abstract methods.

Note – UML uses the italic font to indicate abstract elements in a class
diagram.

The Java compiler prevents the programmer from instantiating an
abstract class. For example, the statement “new Vehicle() ” is illegal.

However, abstract classes may have data attributes, concrete methods,
and constructors. For example, the Vehicle class might include load
and maxLoad attributes and a constructor to initialize them. It is a
good practice to make these constructors protected rather than
public .

RiverBarge

Vehicle

+calcFuelEfficiency () : double

+calcTripDistance () : double

+calcFuelEfficiency() : double

+calcTripDistance() : double

+RiverBarge(max_load : double)

Truck

+calcFuelEfficiency() : double

+calcTripDistance() : double

+Truck(max_load : double)

7

7-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Abstract Classes

The Solution (Continued)

You can declare a class (or method) abstract with the abstract
keyword:

1 public abstract class Vehicle {
2 public abstract double calcFuelEfficiency();
3 public abstract double calcTripDistance();
4 }

Therefore, the subclasses of Vehicle must supply an implementation
of the abstract methods. For example:

1 public class Truck extends Vehicle {
2 public Truck(double max_load) {...}
3
4 public double calcFuelEfficiency() {
5 /* calculate the fuel consumption of a truck at a given load */
6 }
7 public double calcTripDistance() {
8 /* calculate the distance of this trip on highway */
9 }
10 }

1 public class RiverBarge extends Vehicle {
2 public RiverBarge(double max_load) {...}
3
4 public double calcFuelEfficiency() {
5 /* calculate the fuel efficiency of a river barge */
6 }
7 public double calcTripDistance() {
8 /* calculate the distance of this trip along the river-ways */
9 }
10 }

Note – If a subclass does not supply an implementation, it must also
be declared abstract or a compiler warning will occur.

7

Advanced Class Features 7-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Abstract Classes

Template Method Design Pattern

Recall that on line 12 of the FuelNeedsReport class a calculation is
performed to determine how much fuel a vehicle will need.

1 public class FuelNeedsReport {
2 public void generateText(PrintStream output) {

...
11 // Calculate the fuel needed for this trip
12 fuel = v.calcTripDistance() / v.calcFuelEfficency();

...
19 }
20 }

As simple as it was, this calculation should not be performed in this
class. It belongs in the Vehicle class:

Figure 7-5 The Abstract Vehicle Using a Template Method

1 public class FuelNeedsReport {
2 public void generateText(PrintStream output) {

...
11 // Calculate the fuel needed for this trip
12 fuel = v.calcFuelNeeds();

...
19 }
20 }

This is called a Template Method because it is a concrete methodthat is
supplied in an abstract class that uses abstract methods, which are
implemented by the subclasses.

Vehicle

+calcFuelNeeds() : double

#calcFuelEfficiency () : double

#calcTripDistance () : double

This is a Template Method
that uses calcFuelEfficiency
and calcTripDistance to
determine the fuel needs for the
complete shipping trip.

-load : double = 0

-maxLoad : double = 0

+getLoad() : double

+addBox(weight : double)

+getMaxLoad() : double

#Vehicle(max_load : double)

RiverBarge

#calcFuelEfficiency() : double

#calcTripDistance() : double

+RiverBarge(max_load : double)

Truck

#calcFuelEfficiency() : double

#calcTripDistance() : double

+Truck(max_load : double)

7

7-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

The “public interface” of a class is a contract between the “client code”
and the class that provides the service. Concrete classes provide an
implementation for each method, an abstract class can defer the
implementation by declaring the method to be abstract, a Java
interface declares only the contract and no implementation what so
ever.

A concrete class implements an interface by defining all methods
declared by the interface. Many classes can implement the same
interface. These classes do not need to share the same class hierarchy.
Also, a class can implement more than one interface. We will see how
all of this works in the following pages.

As with abstract classes, use an interface name as a type of reference
variable. The usual dynamic binding takes effect. References are cast to
and from interface types, and you use the instanceof operator to
determine if an object’s class implements an interface.

Note – An interface can also declare constants: public static final

✓ The next few pages/slides present a step-wise example to demonstrate the last two points.

7

Advanced Class Features 7-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

The Flyer Example

Imagine a group of objects that all share the same ability: They fly. You
can construct a public interface, called Flyer , that supports three
operations: takeOff , land , and fly .

Figure 7-6 The Flyer Interface and Airplane Implementation

public interface Flyer {
public void takeOff();
public void land();
public void fly();

}

public class Airplane implements Flyer {
public void takeOff() {

// accelerate until lift-off
// raise landing gear

}
public void land() {

// lower landing gear
// decelerate and lower flaps until touch-down
// apply breaks

}
public void takeOff() {

// keep those engines running
}

}

✓ At this point ask: “What other objects can fly?” Typical answers might be: a bird, a
helicopter, and maybe even Superman. If you get Superman, point out that the Superman
class is a Singleton.

+takeOff ()

+land ()

+fly ()

<<interface>>

Flyer

+takeOff()

+land()

+fly()

Airplane

7

7-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

The Flyer Example (Continued)

There can be multiple classes that implement the Flyer interface. We
have seen that an airplane can fly, but a bird can also fly, Superman
can fly, and so on.

Figure 7-7 Multiple Implementations of The Flyer Interface

✓ At this point ask: “What is the superclass of Bird?” Try to phrase it such that they say “a
bird is an animal.”

+takeOff ()

+land ()

+fly ()

<<interface>>

Flyer

+takeOff()

+land()

+fly()

Airplane

+takeOff()

+land()

+fly()

Bird

+takeOff()

+land()

+fly()

Superman

+buildNest()

+layEggs()

+leapBuilding()

+stopBullet()

7

Advanced Class Features 7-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

The Flyer Example (Continued)

An Airplane is a Vehicle and it can fly. A Bird is an Animal and it
can fly. These examples show that a class can inherit from one class,
but also implement some other interface.

This sounds like multiple inheritance. Not quite. The danger of
multiple inheritance is that a class could inherit two distinct
implementations of the same method. This is not possible with
interfaces because an interface method declaration supplies no
implementation.

Figure 7-8 A Mixture of Inheritance and Implementation

Let’s look at the code outline for the Bird class:

public class Bird extends Animal implements Flyer {
public void takeOff() { /* take-off implementation */ }
public void land() { /* landing implementation */ }
public void fly() { /* fly implementation */ }
public void buildNest() { /* nest building behavior */ }
public void layEggs() { /* egg laying behavior */ }
public void eat() { /* override eating behavior */ }

}

The extends clause must come before the implements clause. Notice
that the Bird class can supply its own methods (buildNest and
layEggs) as well as override the Animal class methods (eat).

Vehicle

Animal

+eat()

HomoSapien

+takeOff ()

+land ()

+fly ()

<<interface>>

Flyer

+takeOff()

+land()

+fly()

Airplane

+takeOff()

+land()

+fly()

Bird

+takeOff()

+land()

+fly()

Superman

+buildNest()

+layEggs()

+leapBuilding()

+stopBullet()

+eat() +eat()

7

7-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

The Flyer Example (Continued)

Let’s look at how interfaces can be used. Suppose that you are
constructing an aircraft control software system. It needs to grant
permission to land and take-off for flying objects of all types.

Figure 7-9 Class Hierarchy for the Airport Example

The code for our airport could look like the following:

public class Airport {
public static void main(String[] args) {

Airport metropolisAirport = new Airport();
Helicopter copter = new Helicopter();
SeaPlane sPlane = new SeaPlane();
Flyer S = Superman.getSuperman(); // Superman is a Singleton

metropolisAirport.givePermissionToLand(copter);
metropolisAirport.givePermissionToLand(sPlane);
metropolisAirport.givePermissionToLand(S);

}

private void givePermissionToLand(Flyer f) {
f.land();

}
}

Vehicle

Animal

+eat()

HomoSapien

+takeOff ()

+land ()

+fly ()

<<interface>>

Flyer

+takeOff()

+land()

+fly()

Airplane

+takeOff()

+land()

+fly()

Bird

+takeOff()

+land()

+fly()

Superman

+buildNest()

+layEggs()

+leapBuilding()

+stopBullet()

+eat() +eat()

HelicopterSeaPlane

7

Advanced Class Features 7-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

Multiple Interface Example

A class can implement more than one interface. Not only can our
SeaPlane fly, but it can also sail. The SeaPlane class extends the
Airplane class, so it inherits that implementation of the Flyer
interface. The SeaPlane class also implements the Sailer interface.

Figure 7-10 An Example of Multiple Implementations

Let’s now write the Harbor class that gives docking permission:

public class Harbor {
public static void main(String[] args) {

Harbor bostonHarbor = new Harbor();
RiverBarge barge = new RiverBarge();
SeaPlane sPlane = new SeaPlane();

bostonHarbor.givePermissionToDock(barge);
bostonHarbor.givePermissionToDock(sPlane);

}
private void givePermissionToDock(Sailer s) {

s.dock();
}

}

Notice that our seaplane can take off from Metropolis airport and dock
in Boston harbor.

+takeOff ()

+land ()

+fly ()

<<interface>>

Flyer

+takeOff()

+land()

+fly()

Airplane

+dock ()

+cruise ()

<<interface>>

Sailer

SeaPlane

+dock()

+cruise()

Helicopter

Vehicle

RiverBarge

+dock()

+cruise()

7

7-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Interfaces

Interfaces are useful for:

● Declaring methods that one or more classes are expected to
implement.

● Revealing an object’s programming interface without revealing the
actual body of the class. (This can be useful when shipping a
package of classes to other developers.)

● Capturing similarities between unrelated classes without forcing a
class relationship.

● Simulating multiple inheritance by declaring a class that
implements several interfaces.

✓ Interfaces are often considered as an alternative to multiple inheritance, even though they
provide a different functionality. The concept of interfaces was borrowed from
Objective - C where they were called protocols.

7

Advanced Class Features 7-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Inner Classes

Inner classes, sometimes called nested classes, were added to JDK 1.1
and all subsequent versions. Inner classes allow a class definition to be
placed inside another class definition. Inner classes are a useful feature
because they allow you to group classes that logically belong together
and to control the visibility of one within another. They are also used
to implement details of an implementation that should not be shared
by any other class.

✓ The next few pages/slides present a step-wise example to demonstrate the syntactic and
semantic elements of inner classes. These examples are stripped down to their most
abstract level; that is, they do not show any useful behavior.

✓ While many instructors wait until the introduction of GUI event handlers to discuss this
topic, I feel that this is the proper place for this material within the context of the book.
First, this is an “Advanced Class Feature” topic. Second, I am trying to group all of the
syntax-related material within the first three days of the course. Third, inner classes can
be used for more than event handlers and should be discussed independent of any
specific use.

7

7-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Inner Classes

Consider the following class definition:

1 public class Outer1 {
2 private int size;
3
4 /* Declare an inner class called "Inner" */
5 public class Inner {
6 public void doStuff() {
7 // The inner class has access to ’size’ from Outer
8 size++;
9 }
10 }
11
12 public void testTheInner() {
13 Inner i = new Inner();
14 i.doStuff();
15 }
16 }

The Outer class declares a data attribute called size , an inner class
called Inner , and a method called testTheInner . The Inner class
declares a method called doStuff . This method has access to the scope
of the Outer class. That is, the size variable in the doStuff method
(line 8) refers to the data attribute of the Outer object (line 2).

This implies that the inner object keeps a reference to the outer object.
Figure 7-11 demonstrates how this might be implemented in the JVM.

Figure 7-11 Memory Representation of Inner Classes

main

testTheInner

doStuff

i

this

this

Heap Memory

Outer

size0

Execution Stack

Inner

Outer.this

7

Advanced Class Features 7-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Inner Classes

In this example, we show how to instantiate objects of a public inner
class outside of the definition of the Outer class.

1 public class Outer2 {
2 private int size;
3
4 public class Inner {
5 public void doStuff() {
6 size++;
7 }
8 }
9 }

1 public class TestInner {
2 public static void main(String[] args) {
3 Outer2 outer = new Outer2();
4
5 // Must create an Inner object relative to an Outer
6 Inner inner = outer.new Inner ();
7 inner.doStuff();
8 }
9 }

An Inner class object is instantiated within the context of an instance
of the Outer class (line 6 of the TestInner main method).

Figure 7-12 Access to an Inner Class Object From Another Class

main

doStuff

inner

this

Heap Memory

Outer

size0

Execution Stack

outer

Inner

Outer.this

7

7-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Inner Classes

In this example, we show how to disambiguate variables with the
same name:

1 public class Outer3 {
2 private int size;
3
4 public class Inner {
5 private int size;
6
7 public void doStuff(int size) {
8 size ++; // the local parameter
9 this.size ++; // the Inner object attribute
10 Outer.this.size ++; // the Outer object attribute
11 }
12 }
13 }

The size variable is used in three contexts: as a data attribute for the
Outer class, as a data attribute for the Inner class, and as a local
variable of the doStuff method. This is perfectly valid, but the code
must be written such that the compiler can distinguish each variable.

Figure 7-13 Disambiguation of Variables in Multiple Contexts

main

doStuff
size

this

Heap Memory

Outer

size0

Execution Stack

Inner

size0

Outer.this

0

7

Advanced Class Features 7-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Inner Classes

In this example, we show that an inner class can be defined within the
scope of a method:

1 public class Outer4 {
2 private int size = 5;
3
4 public Object makeTheInner(int localVar) {
5 final int finalLocalVar = 6;
6
7 // Declare a class within a method!?!
8 class Inner {
9 public String toString() {
10 return ("#<Inner size=" + size +
11 // " localVar=" + localVar + // ERROR: ILLEGAL
12 " finalLocalVar=" + finalLocalVar + ">");
13 }
14 }
15
16 return new Inner();
17 }
18
19 public static void main(String[] args) {
20 Outer4 outer = new Outer4();
21 Object obj = outer.makeTheInner(47);
22 System.out.println("The object is " + obj);
23 }
24 }

The important thing to note in this example is that methods of the
inner class do not have complete access to the scope of the outer-
method. For example, suppose you have a method that creates an
inner class object and returns that object (line 16). Upon exiting the
makeTheInner method, the local variable no longer exists, so methods
of the inner class (such as doStuff) cannot have access to these
variables at run-time. Therefore, line 11 issues a compiler error.
However, the final variable exists beyond the run-time life of a
method; therefore, line 12 is fine.

Note – This discussion of inner classes only shows the syntax of this
mechanism. You will see how they are commonly used in Module 11,
"GUI Event Handling."

7

7-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Properties of Inner Classes

Inner classes have the following properties:

● You can use the class name only within the defined scope, except
when referenced by its qualified name. The name of the inner class
must differ from the enclosing class.

● You can define the inner class inside a method. The rule that
governs access to variables of enclosing methods is simple. Any
variable, either a local variable or a formal parameter, cannot be
accessed by methods within an inner class, unless the variable is
marked as final .

7

Advanced Class Features 7-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Properties of Inner Classes

● The inner class can use both static and instance variables of
enclosing classes and final local variables of enclosing blocks.

● You can define the inner class as abstract . Therefore, you can
have complete inner class hierarchies.

● You can declare inner classes with any level of access protection.
For example, a private inner class can only be accessed with outer
class scope; a protected inner class can be used by subclasses; and
so on. Access protection does not prevent the inner class from
using any member of another class as long as one encloses the
other.

● An inner class can be an interface that is implemented by another
inner class.

7

7-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Properties of Inner Classes

● Inner classes that are declared static automatically become top-
level classes. Static inner classes are not created relative to an
object of the outer class. Therefore, methods of a static inner class
do not have access to the outer class scope.

● Inner classes cannot declare any static members; only top-level
classes can declare static members. Therefore, an inner class
requiring a static member must use one from the top-level class.

Note – When a top-level class in compiled, the inner class is compiled
as well. A .class file is created for it with a name that takes the form:
OuterClass $InnerClass . For example, the Inner inner class is
compiled to the file: Outer$Inner.class .

7

Advanced Class Features 7-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With Interfaces and Abstract Classes

Exercise objective – You will rewrite, compile, and run a program
that uses an abstract class and an interface.

Preparation

To successfully complete this lab, you must be familiar with the object-
oriented concepts presented in this module.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod07). A listing of this directory will show
two subdirectories. This exercise is found in the directory called
exercise2 .

Exercise 2: Use Interfaces and Abstract Classes (Level 2)

In this exercise you will create a hierarchy of animals that is rooted in
an abstract class Animal . Several of the animal classes will implement
an interface called Pet . You will experiment with variations of these
animals, their methods, and polymorphism.

7

7-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With Interfaces and Abstract Classes

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

7

Advanced Class Features 7-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Describe static variables, methods, and initializers

❑ Describe final classes, methods, and variables

❑ Explain how and when to use abstract classes and methods

❑ Explain how and when to use inner classes

❑ Distinguish between static and non-static inner classes

❑ Explain how and when to use an interface

❑ In a Java software program, identify:

▼ static methods and attributes

▼ final methods and attributes

▼ inner classes

▼ interface and abstract classes

▼ abstract methods

7

7-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

What features of the Java programming language are used to deal with
runtime error conditions?

8-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exceptions 8

Objectives

Upon completion of this module, you should be able to:

● Define exceptions

● Use try, catch , and finally statements

● Describe exception categories

● Identify common exceptions

● Develop programs to handle your own exceptions

This module covers the error handling facilities built into the Java
programming language.

8

8-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answer to
the question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● In most programming languages, how are runtime errors
resolved?

✓ Writing a good computer program includes proper error handling and recovery. The
Exception mechanism in the Java programming language provides a simple, streamlined,
organized approach. This module covers the Exception mechanism built into the Java
programming language, and how to use it effectively.

8

Exceptions 8-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exceptions

Introduction

What is an exception? In the Java programming language, the
Exception class defines mild error conditions that your programs
might encounter. Rather than letting the program terminate, you can
write code to handle your exceptions and continue program execution.

Any abnormal condition that disturbs the normal program flow while
the program is in execution is an error or exception. For example,
exceptions can occur when:

● The file you try to open does not exist.

● The network connection is disrupted.

● Operands being manipulated are out of prescribed ranges.

● The class file you are interested in loading is missing.

8

8-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exceptions

Introduction (Continued)

In the Java programming language, the Error class defines what are
considered to be serious error conditions from which you should not
attempt to recover. In most cases, you should let the program
terminate when such an error is encountered.

The Java programming language implements C++ style exceptions to
help you build resilient code. When an error occurs in your program,
the method that finds the error can “throw” an exception back to its
caller to signal that a problem has occurred. The calling method then
has the opportunity to “catch” the thrown exception and, when
possible, recovers from it. This scheme gives the programmer the
option of writing a “handler” to deal with the exception.

You can determine the exceptions a method throws by browsing
the API.

8

Exceptions 8-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exceptions

Example

The following is an example of a version of the HelloWorld.java
program that cycles through messages.

1 public class HelloWorld {
2 public static void main(String[] args) {
3 int i = 0;
4
5 String greetings [] = {
6 "Hello world!",
7 "No, I mean it!",
8 "HELLO WORLD!!"
9 };
10
11 while (i < 4) {
12 System.out.println(greetings[i]);
13 i++;
14 }
15 }
16 }

✓ This program quickly produces an exception. Ask students where the exception comes
from.

✓ The exception produced is the ArrayIndexOutOfBoundsException . It is produced in the
System.out.println method when i has a value of 3.

8

8-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

Introduction

Normally, a program terminates with an error message when an
exception is thrown, as does the program shown previously after its
loop has executed four times.

java HelloWorld
Hello world!
No, I mean it!
HELLO WORLD!!
java.lang.ArrayIndexOutOfBoundsException: 3
 at HelloWorld.main(HelloWorld.java:12)

Exception handling allows a program to catch exceptions, handle
them, and then continue program execution. It is structured so that
error cases do not get in the way of the normal flow of a program.
These special cases are handled when they occur, in separate code
blocks associated with the code for normal execution. This produces
more legible and manageable code.

✓ To see the line numbers in the stack trace, the student must set the JAVA_COMPILER
environment variable to NONEor use the java command option " -Djava.compiler=NONE ".

8

Exceptions 8-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

The Java programming language provides a mechanism for figuring
out which exception was thrown and how to recover from it.

try and catch Statements

To handle a particular exception, place code, which when invoked
throws exceptions, inside a try block and create a list of adjoining
catch blocks, one for each possible exception that can be thrown. The
block statement of a catch clause is executed if the exception
generated matches the one listed in the catch . There can be multiple
catch blocks after a try block, each handling a different exception
type.

1 try {
2 // code that might throw a particular exception
3 } catch (MyExceptionType myExcept) {
4 // code to execute if a MyExceptionType exception is thrown
5 } catch (Exception otherExcept) {
6 // code to execute if a general Exception exception is thrown
7 }

8

8-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

The Call Stack Mechanism

If a statement within a method throws an exception, that exception is
thrown to the calling method. If the exception is not handled in the
calling method, it is thrown to the caller of that method. This process
continues until the exception is handled. If an exception is not handled
by the time it gets back to main() and main() does not handle it, the
exception terminates the program abnormally.

Consider a case where the main() method calls another method
named first() , and this in turn calls another method named
second() . If an exception occurs in second() , it is thrown back to
first() , where a check is made to see if there is a catch for that type
of exception. If no catch exists in first() , the next method in the call
stack, main() , is checked. If the exception is not handled by the last
method on the call stack, then a runtime error occurs and the program
stops executing.

8

Exceptions 8-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

finally Statement

The finally statement defines a block of code that always executes,
regardless of whether an exception was caught. The following sample
code and description is taken from the white paper, “Low Level Security
in Java”, by Frank Yellin:

1 try {
2 startFaucet();
3 waterLawn();
4 } catch (BrokenPipeException e) {
5 logProblem(e);
6 } finally {
7 stopFaucet();
8 }

✓ Use of catch() is optional, depending on the situation.

8

8-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

finally Statement (Continued)

In the previous example, the faucet is turned off whether or not an
exception occurs while starting the faucet or while watering the lawn.
The code inside the braces after the try is called the protected code.

The only time the finally statement would not be executed is if the
System.exit() method, which terminates the program, is executed
within the protected code. This implies that the control flow can
deviate from normal sequential execution. If, for example, a return
statement is embedded in the code inside the try block, the code in
the finally block executes before the return .

8

Exceptions 8-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

Example Revisited

The following example is a rewrite of the main() method from
page 7-5. The exception generated in the earlier version of the program
is caught and the array index is reset, allowing the program to
continue.

1 public class HelloWorld {
2 public static void main(String[] args) {
3 int i = 0;
4 String[] greetings = {
5 "Hello world!",
6 "No, I mean it!",
7 "HELLO WORLD!!"
8 };
9
10 while (i < 4) {
11 try {
12 System.out.println(greetings[i]);
13 } catch (ArrayIndexOutOfBoundsException e){
14 System.out.println("Re-setting Index Value");
15 i = -1;
16 } finally {
17 System.out.println("This is always printed");
18 }
19 i++;
20 }
21 }
22 }

✓ The try statements can be nested and the exceptions can migrate upward.

8

8-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Handling

Example Revisited (Continued)

The message displayed on the screen alternates among the following
messages as the loop is executed:

Hello world!
This is always printed
No, I mean it!
This is always printed
HELLO WORLD!!
This is always printed
Re-setting Index Value
This is always printed

✓ The fourth message displayed is due to the generated exception being caught and
handled. The array index is reset to allow continuation of the alternating messages.

8

Exceptions 8-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Categories

There are three broad categories of exceptions in the Java technology
programming language. The class java.lang.Throwable acts as the
parent class for all objects that are thrown and caught using the
exception-handling mechanisms. Methods defined in the Throwable
class retrieve the error message associated with the exception and
print the stack trace showing where the exception occurred. There are
three essential subclasses of this, Error, RuntimeException, and
Exception , which are shown in Figure 8-1.

Figure 8-1 Subclasses and Exceptions

✓ The IndexOutOfBoundsException is the superclass of ArrayIndexOutOfBoundsException ,
which is the exception thrown by the example.

Throwable

Error

Exception

RuntimeException

IOException

ArithmeticException

NullPointerException

IndexOutOfBoundsException

FileNotFoundException

VirtualMachineError

AWTError

StackOverflowError

OutOfMemoryError

EOFException

8

8-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exception Categories

You should not use the Throwable class; instead, use one of the
subclass exceptions to describe any particular exception. The following
describes the purpose of each exception:

● Error indicates a severe problem from which recovery is difficult,
if not impossible. An example is running out of memory. A
program is not expected to handle such conditions.

● RuntimeException indicates a design or implementation
problem. That is, it indicates conditions that should never happen
if the program is operating properly. An
ArrayIndexOutOfBoundsException exception, for example,
should never be thrown if the array indices do not extend past the
array bounds. This would also apply, for example, to referencing a
null object variable. Because a correctly designed and
implemented program never issues this type of exception, it is
usual to leave it unhandled. This results in a message at runtime,
and ensures that action is taken to correct the problem, rather than
hiding it where (you think) no one will notice.

● Other exceptions indicate a difficulty at runtime that is usually
caused by environmental effects and can be handled. Examples
include a file not found or invalid URL exceptions (user typed a
wrong URL), both of which could easily occur if the user mistyped
something. Because these usually occur as a result of user error,
programmers are encouraged to handle them.

8

Exceptions 8-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Common Exceptions

The Java programming language provides several predefined
exceptions. Some of the more common exceptions are:

● ArithmeticException – The result of a divide-by-zero operation
for integers:

int i = 12 / 0;

✓ This exception is not generated by arithmetic overflow.

✓ ArithmeticException s are not generated by dividing floating point numbers by zero; these
values are defined by the IEEE and are constants (final static), which are declared in the
Float class.

• 0.0/0 = NaN (not a number)

• FPN/0 = POSITIVE_INFINITY

• -FPN/0 = NEGATIVE_INFINITY

● NullPointerException – An attempt to access an object’s
attribute or method when the object is not instantiated:

Date d = null;
System.out.println(d.toString());

8

8-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Common Exceptions

● NegativeArraySizeException – An attempt to create an array
with a negative dimension size.

● ArrayIndexOutOfBoundsException – An attempt to access an
element of an array beyond the array’s size.

● SecurityException – Typically thrown in a browser, the
SecurityManager class throws an exception for applets that
attempt to do any of the following (unless explicitly allowed):

▼ Access a local file

▼ Open a socket to the host that is not the same host that served
the applet

▼ Execute another program in a runtime environment

8

Exceptions 8-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Handle or Declare Rule

To encourage the writing of robust code, the Java programming
language requires that if an Exception occurs while a method is on
the stack (that is, it has been called), then the caller of that method
must determine what action is to be taken if a problem arises.

The programmer can do the following to satisfy this requirement:

● Have the calling method handle the exception by including in its
code a try {} catch(){} block where the catch names any
superclass of the thrown exception. This counts as handling the
situation, even if the catch block is empty.

● Have the calling method indicate that it does not handle the
exception, and that the exception will be thrown back to its calling
method.

Note – A method does not have to handle or declare run-time
exceptions or errors.

8

8-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Handle or Declare Rule

A method can declare that an exception might be thrown in the body
of the method with a throws clause as follows:

 public void callsTroublesome() throws IOException

Following the keyword throws is a list of all the exceptions that the
method can throw back to its caller. Although only one exception is
shown here, you can use a comma-separated list if this method throws
multiple possible exceptions.

✓ Even after an exception is caught, it can still be rethrown.

Whether you choose to handle or declare an exception depends on
whether you consider yourself or your caller a more appropriate
candidate for dealing with the exception.

Note – Because the exception classes are organized into hierarchies as
other classes are, and because you can use a class whenever a subclass
is expected, you can catch " groups" of exceptions and handle them
with the same catch code. For example, although there are several
different types of IOExceptions (EOFException ,
FileNotFoundException, and so on), by trapping IOException
you can also catch instances of any subclass of IOException .

8

Exceptions 8-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Method Overriding and Exceptions

When overriding a method that throws exceptions, the overriding
method must also declare a throws clause that is a proper subset of
exception classes thrown by the superclass method.

● The declared exception class must be the same class or a subclass.
For example, if the superclass method throws an IOException ,
then the overriding method can throw an IOException , a
FileNotFoundException (a subclass of IOException), but not an
Exception (the superclass of IOException)

● Fewer exceptions may be declared in the throws clause.

● New exceptions may not be added to the throws clause.

8

8-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Method Overriding and Exceptions

In the example below, we declare three classes: TestA , TestB1 , and
TestB2 . TestA is the superclass of TestB1 and TestB2 .

1 public class TestA {
2 public void methodA() throws RuntimeException {
3 // do some number crunching
4 }
5 }

✓ It is not necessary to declare the RuntimeException class, but it is useful for these
examples.

1 public class TestB1 extends TestA {
2 public void methodA() throws ArithmeticException {
3 // do some number crunching
4 }
5 }

1 public class TestB2 extends TestA {
2 public void methodA() throws Exception {
3 // do some number crunching
4 }
5 }

The class TestB1 compiles since ArithmeticException is a subclass
of RuntimeException . However, class TestB2 fails to compile because
Exception is a superclass of RuntimeException .

8

Exceptions 8-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Method Overriding and Exceptions

In this example, we demonstrate the rules for declaring multiple
exceptions in overriding methods.

1 import java.io.*;
2
3 public class TestMultiA {
4 public void methodA()
5 throws IOException, RuntimeException {
6 // do some IO stuff
7 }
8 }

The class TestMultiA declares a method that throws two classes of
exceptions: IOException and RuntimeException .

1 import java.io.*;
2
3 public class TestMultiB1 extends TestMultiA {
4 public void methodA()
5 throws FileNotFoundException, UTFDataFormatException,
6 ArithmeticException {
7 // do some IO and number crunching stuff
8 }
9 }

The class TestMultiB1 compiles because both
FileNotFoundException and UTFDataFormatException are
subclasses of IOException and ArithmeticException is a subclass of
RuntimeException .

8

8-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Method Overriding and Exceptions

1 import java.io.*;
2 import java.sql.*;
3
4 public class TestMultiB2 extends TestMultiA {
5 public void methodA()
6 throws FileNotFoundException, UTFDataFormatException,
7 ArithmeticException, SQLException {
8 // do some IO, number crunching, and SQL stuff
9 }
10 }

Class TestMultiB2 fails to compile because SQLException is not
consistent with any of the exceptions declared in the TestMultiA
method; that is, you cannot add new exceptions to the overriding
method.

1 public class TestMultiB3 extends TestMultiA {
2 public void methodA() throws java.io.FileNotFoundException {
3 // do some file IO
4 }
5 }

Class TestMultiB3 demonstrates that you can declare that an
overriding method throws fewer exceptions than the superclass
method.

8

Exceptions 8-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Your Own Exceptions

Introduction

User-defined exceptions are created by extending the Exception
class. Exception classes contain anything that a "regular" class
contains. The following is an example of a user-defined exception class
containing a constructor, some variables, and methods.

1 public class ServerTimedOutException extends Exception {
2 private int port;
3
4 public ServerTimedOutException(String message, int port) {
5 super(message);
6 this.port = port;
7 }
8
9 // Use the getMessage method to get the reason the exception was made
10
11 public int getPort() {
12 return port;
13 }
14 }

To throw an exception that you have created, use the following syntax:

throw new ServerTimedOutException("Could not connect", 80);

8

8-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Your Own Exceptions

Example

Consider a client-server program. In the client code, you try to connect
to the server and expect the server to respond within 5 seconds. If the
server does not respond, your code could throw an exception (such as
a user-defined ServerTimedOutException) as follows:

1 public void connectMe(String serverName)
2 throws ServerTimedOutException {
3 int success;
4 int portToConnect = 80;
5
6 success = open(serverName, portToConnect);
7
8 if (success == -1) {
9 throw new ServerTimedOutException("Could not connect",
10 portToConnect);
11 }
12 }

✓ Point out that although the open() call here is fictitious, the throw command uses the
correct syntax.

✓ Point out that you should create the exception at the point it is thrown. This is because
the stack trace and line number information are added during construction and will be
misleading otherwise.

To catch your exception, use the try statement:

1 public void findServer() {
2 try {
3 connectMe(defaultServer);
4 } catch (ServerTimedOutException e) {
5 System.out.println("Server timed out, trying alternative");
6 try {
7 connectMe(alternativeServer);
8 } catch (ServerTimedOutException e1) {
9 System.out.println("Error: " + e1.getMessage() +
10 " connecting to port " + e1.getPort());
11 }
12 }
13 }

8

Exceptions 8-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Your Own Exceptions

Example (Continued)

Note – You can nest the try and catch blocks, as shown in the
previous example.

You can also partially process an exception and then throw it as well.
For example:

try {
 connectMe(defaultServer);
} catch (ServerTimedOutException e) {

 System.out.println(“Error caught and rethrown”);
throw e;

}

8

8-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Handling and Creating Exceptions

Exercise objective – You will gain experience with the exception
mechanism by writing Java software programs that create and handle
exceptions.

Preparation

To successfully complete this lab, you must understand the concepts of
handling runtime errors called exceptions.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod08). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Handle an Exception (Level 1)

In this exercise you will use the try-catch block to handle a simple
runtime exception.

Exercise 2: Create Your Own Exception (Level 1)

In this exercise you will create an OverdraftException that is thrown
by the withdraw method in the Account class.

8

Exceptions 8-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Handling and Creating Exceptions

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

8

8-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Define exceptions

❑ Use try, catch, and finally statements

❑ Describe exception categories

❑ Identify common exceptions

❑ Develop programs to handle your own exceptions

8

Exceptions 8-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

How many situations can you think of that would require you to
create new classes of exceptions?

Can you think of situations where a constructor would throw an
exception?

9-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Text-BasedApplications 9

Objectives

Upon completion of this module, you should be able to:

● Write a program that uses command-line arguments and system
properties

● Write a program that reads from standard input

● Write a program that can create, read, and write files

● Describe the basic hierarchy of collections in Java 2 SDK

● Write a program that uses sets and lists

● Write a program to iterate over a collection

● Write a program to sort an array or a list

● Describe the collection classes that existed before Java 2 SDK

● Describe and use the javadoc and jar tools

● Identify deprecated classes and explain how to migrate from
JDK 1.0 to JDK 1.1 to Java 2 JDK

This module covers a variety of topics that extend your knowledge of
the Java 2 SDK. These topics cover elements of parameterizing the run-
time behavior of a program, reading and writing text files, handling
collections, sorting arrays and collections, and using Java technology
tools to document your code and deploy systems.

✓ This is a long module. The goal is to present information useful for a programmer building
full-scale applications. A few topics are included that are covered in the SCJP exam and
are not covered elsewhere in this course. The instructor is free to skip certain sections if
time is running short or to tailor the content to the needs or requests of the class.

9

9-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
the questions. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● It is often the case that certain elements of a program should not
be hard coded, such as file names or the name of a database. How
can a program be coded to supply these elements at runtime?

✓ A program can be parameterized by command-line arguments and system properties.

● Simple arrays are far too static for most collections (that is, a fixed
number of elements). What Java technology features exist to
support more flexible collections?

● Besides computation, what are key elements of any text-based
application?

✓ Writing an application is much more than performing some calculations. A successful
text-based application might use input from the keyboard or a file and produce output. It
might also be parameterized by command-line arguments and system properties.

● Documentation is a key source of technology transfer. What Java
technology tools support package and class API documentation?

✓ Why javadoc , of course!

9

Text-Based Applications 9-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Command-Line Arguments

When a Java technology program is launched from a terminal window
the user may provide the program with zero or more command-line
arguments. These arguments are strings: either stand-alone tokens such
as arg1 or quoted strings such as "another arg" . The sequence of
arguments follows the name of the program class and is stored in an
array of String objects passed to the static main method. For example:

1 public class TestArgs {
2 public static void main(String[] args) {
3 for (int i = 0; i < args.length; i++) {
4 System.out.println("args[" + i + "] is ’" + args[i] + "’");
5 }
6 }
7 }

This program displays each command-line argument that is passed to
the TestArgs program. Try this:

java TestArgs arg1 arg2 "another arg"

9

9-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

System Properties

System properties are another mechanism used to parameterize a
program at run-time. A property is a mapping between a property
name and its value; both are strings. The Properties class represents
this kind of mapping. The System.getProperties method returns
the system properties object. The System.getProperty(String)
method returns the string value of the property named in the String
parameter. There is another method, System.getProperty(String,
String) , that allows you to supply a default string value (the second
parameter), which is returned if the named property does not exist.

Note – There is a default set of properties that every JVM must supply.
(See the documentation for the System.getProperties method for
details.) Moreover, a particular JVM vendor may supply others.

There are also static methods in the wrapper classes that perform
conversion of property values: Boolean.getBoolean(String) ,
Integer.getInteger(String) , and Long.getLong(String) . The
string argument is the name of the property. If the property does not
exist, the false or null (respectively) is returned.

9

Text-Based Applications 9-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

System Properties

The Properties Class

As mentioned above, an object of the Properties class contains a
mapping between property names (String) and values (String). It
has two main methods for retrieving a property value:
getProperty(String) and getProperty(String, String) ; the
latter method allows a default value to be specified which is returned
if the named property does not exist.

You can iterate through the complete set of property names using the
propertyNames method; and by calling getProperty on each name
you can retrieve all of the values.

Finally, property sets can be stored and retrieved from any I/O stream
using the store and load methods.

9

Text-Based Applications 9-6
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

System Properties

The following program lists the complete set of properties that exist
when the program executes:

1 import java.util.Properties;
2 import java.util.Enumeration;
3
4 public class TestProperties {
5 public static void main(String[] args) {
6 Properties props = System.getProperties();
7 Enumeration prop_names = props.propertyNames();
8
9 while (prop_names.hasMoreElements()) {
10 String prop_name = (String) prop_names.nextElement();
11 String property = props.getProperty(prop_name);
12 System.out.println("property ’" + prop_name
13 + "’ is ’" + property + "’");
14 }
15 }
16 }

Line 6 retrieves the set of system properties and line 7 retrieves an
"enumeration" over all of the property names in the set of properties.
An Enumeration object allows the program to loop over elements in a
collection. This is very similar to an Iterator , which we will discuss
in "Iterators" on page 9-31 The hasMoreElements method returns true
if there are more elements to be iterated over and the nextElement
method returns the next element in the enumeration. Line 11 retrieves
the property value and lines 12-13 print out the property name/value
pair.

> java -DmyProp=theValue TestProperties

Here is an excerpt of the output:

property ’java.vm.version’ is ’1.2.2’
property ’java.compiler’ is ’NONE’
property ’path.separator’ is ’:’
property ’file.separator’ is ’/’
property ’user.home’ is ’/home/basham’
property ’java.specification.vendor’ is ’Sun Microsystems Inc.’
property ’user.language’ is ’en’
property ’user.name’ is ’basham’
property ’myProp’ is ’theValue’

9

Text-Based Applications 9-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Console I/O

Most applications must interact with the user. Such interaction is often
accomplished with text input and output to the console (using the
keyboard as the standard input and using the terminal window as the
standard output).

Java 2 SDK supports console I/O with three public variables on the
java.lang.System class:

● System.out is a PrintStream object that (initially) refers to the
terminal window that launched the Java technology application.

● System.in is an InputStream object that (initially) refers to the
users keyboard.

● System.err is a PrintStream object that (initially) refers to the
terminal window that launched the Java technology application.

✓ It is possible to reroute these streams using the static methods: System.setOut ,
System.setIn , and System.setErr . For example, you could reroute Standard Error to a file
stream.

9

9-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Console I/O

Writing to Standard Output

As we have seen, it is possible to write to standard output through the
System.out.println(String) method. This PrintStream method
prints the string argument to the console and adds a newline character
at the end. The following methods are also supported to print other
types: primitives, a character buffer, and an arbitrary object. All of
these methods add a newline at the end of the output.

void println(boolean)
void println(char)
void println(double)
void println(float)
void println(int)
void println(long)
void println(char[])
void println(Object)

There is also a corresponding set of overloaded methods, called print ,
that do not add the newline character.

9

Text-Based Applications 9-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Console I/O

Reading From Standard Input

The following example shows a technique that you should use to read
String information from the console standard input:

1 import java.io.*;
2
3 public class KeyboardInput {
4 public static void main (String[] args) {
5 String s;
6 // Create a buffered reader to read
7 // each line from the keyboard.
8 InputStreamReader ir = new InputStreamReader(System.in);
9 BufferedReader in = new BufferedReader(ir);

Line 5 declares a String variable, s, that the program uses to hold
each line read from standard input.

Lines 8-9 wrap System.in with two support objects that massage the
stream of bytes coming from standard input. The InputStreamReader
(ir) reads characters from and converts the raw bytes into Unicode
characters. The BufferedReader (in) provides the getLine method
which allows the program to read from standard input a line at a time.

✓ Stream chaining is covered in Module 15, "Advanced I/O Streams."

10
11 System.out.println("Type ctrl-d or ctrl-c to exit.");

Note – The ctrl-d character on UNIX indicates the “end of file”
condition. On Microsoft Windows use the keystroke sequence: ctrl-z
<Enter> to indicate end of file (EOF).

9

9-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Console I/O

Reading From Standard Input (Continued)

12
13 try {
14 // Read each input line and echo it to the screen.
15 s = in.readLine();
16 while (s != null) {
17 System.out.println("Read: " + s);
18 s = in.readLine();
19 }

Line 15 reads the first line of text from standard input. The while loop
(lines 16-19) iteratively prints out the current line and reads the next
line. This code could be rewritten more succinctly (but more
cryptically) as:

while ((s = in.readLine()) != null) {
System.out.println("Read: " + s);

}

Because the readLine method may throw an I/O exception, all of this
code needs to be wrapped in a try-catch block.

20
21 // Close the buffered reader.
22 in.close();

Line 22 closes the outer most input stream. This is done to release any
system resources related to creating these stream objects.

23 } catch (IOException e) { // Catch any IO exceptions.
24 e.printStackTrace();
25 }
26 }
27 }

Finally, the program handles any I/O exceptions that may arise.

9

Text-Based Applications 9-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

Input/Output (I/O) is one of the most important elements of
programming. Java technology includes a rich set of I/O "streams." In
the previous section we saw how to use streams to communicate with
the user through standard output (usually a terminal window) and
standard input (usually the keyboard). In this section we will examine
a few simple techniques for reading and writing to files with a focus
on character data. We will cover:

● Creating File objects

● Manipulating File objects

● Reading and writing to file streams

Module 15, ‘‘Advanced I/O Streams," covers the details of Java
technology I/O streams.

9

9-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

Creating a New File Object

The File class provides several utilities for dealing with files and
obtaining information about them. In Java, a directory is just another
file. You can create a File object that represents a directory and then
use it to identify other files; as is done in the third example below.

● File myFile;
myFile = new File("myfile.txt");

● myFile = new File("MyDocs", "myfile.txt");

● File myDir = new File("MyDocs");
myFile = new File(myDir, "myfile.txt");

9

Text-Based Applications 9-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

Creating a New File Object (Continued)

The constructor you use often depends on the other file objects you
can access. For example, if you use only one file in your application,
use the first constructor. However, if you use several files from a
common directory, using the second or third constructors might be
easier.

The class File defines platform-independent methods for
manipulating a file maintained by a native file system. However, it
does not allow you to access the contents of the file.

Note – You can use a File object as the constructor argument for
FileReader and FileWriter objects in place of a string. This gives
you independence from the local file system conventions and is
generally recommended.

✓ Although Microsoft Windows uses \ as directory delimiters, / works within Java File and
other streaming classes. If no device is specified (/thisDevice/outputFile), the paths are
considered relative to the current device. If you need to specify a different device, preface
the path with the device name (D:/otherDevice/inputFile). You use /; even though you
are referencing files on a Microsoft Windows system.

9

9-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

File Tests and Utilities

Once you have created a File object, you can use any of the following
methods to gather information about the file:

File Names

The following methods return file names.

● String getName()

● String getPath()

● String getAbsolutePath()

● String getParent()

● boolean renameTo(File newName)

9

Text-Based Applications 9-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

File Tests and Utilities (Continued)

File Tests

The following methods return information about file attributes.

● boolean exists()

● boolean canWrite()

● boolean canRead()

● boolean isFile()

● boolean isDirectory()

● boolean isAbsolute()

General File Information and Utilities

The following methods return general file information.

● long lastModified()

● long length()

● boolean delete()

Directory Utilities

The following methods provide directory utilities.

● boolean mkdir()

● String[] list()

9

9-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

File Stream I/O

The following program reads a text file and echoes each line to
standard output; thus printing the file.

1 import java.io.*;
2 public class ReadFile {
3 public static void main (String[] args) {
4 // Create file
5 File file = new File(args[0]);
6
7 try {
8 // Create a buffered reader to read each line from a file.
9 BufferedReader in = new BufferedReader(new FileReader(file));
10 String s;

Line 5 creates a new File object based on the first command-line
argument to the program. Line 10 creates a buffered reader that wraps
around a file reader. This code may throw a FileNotFoundException
if the file does not exist.

9

Text-Based Applications 9-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

File Stream I/O (Continued)

The following program reads a text file and echoes each line to
standard output; thus printing the file.

11
12 // Read each line from the file and echo it to the screen.
13 s = in.readLine();
14 while (s != null) {
15 System.out.println("Read: " + s);
16 s = in.readLine();
17 }
18 // Close the buffered reader, which also closes the file reader.
19 in.close();
20
21 } catch (FileNotFoundException e1) {
22 // If this file does not exist
23 System.err.println("File not found: " + file);
24
25 } catch (IOException e2) {
26 // Catch any other IO exceptions.
27 e2.printStackTrace();
28 }
29 }
30 }

The while loop in lines 13 through 15 is exactly the same as in the
KeyboardInput program; it reads each text line in the buffered reader
and echoes it to standard output.

Line 17 closes the buffered reader, which in turn closes the file reader
that the buffered reader object decorates.

The exception handling code in lines 19 through 21 is used to catch the
FileNotFoundException that might be thrown by the FileReader
constructor. Lines 23 through 25 handle any other I/O-based exception
that might be thrown (by the readLine and close methods).

9

9-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

File Output

The following program reads input lines from the keyboard and
echoes each line to a file.

1 import java.io.*;
2
3 public class WriteFile {
4 public static void main (String[] args) {
5 // Create file
6 File file = new File(args[0]);
7
8 try {
9 // Create a buffered reader to read each line from standard in.
10 BufferedReader in
11 = new BufferedReader(new InputStreamReader(System.in));
12 // Create a print writer on this file.
13 PrintWriter out
14 = new PrintWriter(new FileWriter(file));
15 String s;

Just as in the previous example, line 6 creates a File object based on the
first command-line argument. Lines 10-11 create a buffered reader for
the standard input. Lines 13-14 create a print writer that decorates a
file writer for the file created in line 6.

16
17 System.out.print("Enter file text. ");
18 System.out.println("[Type ctrl-d to stop.]");
19
20 // Read each input line and echo it to the screen.
21 while ((s = in.readLine()) != null) {
22 out.println(s);
23 }

Line 17 and 18 prompt the user to enter lines of text to be placed in the
file and to type ctrl-d to stop.

Note – The ctrl-d character (which represents the "end of file/input")
must be used in this example and not ctrl-c because ctrl-c terminates
the JVM before the program properly closes the file stream.

9

Text-Based Applications 9-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Files and File I/O

File Output (Continued)

24
25 // Close the buffered reader and the file print writer.
26 in.close();
27 out.close();
28
29 } catch (IOException e) {
30 // Catch any IO exceptions.
31 e.printStackTrace();
32 }
33 }
34 }

Lines 26 and 27 dutifully close the input and output streams. Lines 29
through 31 handle any I/O exceptions that might be thrown.

9

9-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: File Input and Output

Exercise objective – You will gain experience with reading from the
standard input and writing to a file.

Preparation

To successfully complete this lab, you must understand the concepts of
reading text lines from standard input and sending text to a file output
stream.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod09). A listing of this directory will show
six subdirectories. These two will be found in a directory called
exercise1 and exercise2 .

Exercise 1: Write a File with Numbered Lines (Level 1 Lab)

In this exercise you will create a program to read text from standard
input and write it to a file with each line prefixed with a line-number
count. This file will be specified by a command-line argument.

Exercise 2: Develop a Directory Listing Program (Level 3 Lab)

In this exercise you will create a program to print out a directory
listing for the directory specified by the last command-line argument.

9

Text-Based Applications 9-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Math Class

✓ The next three sections are reference material for the SCJP exam.

The Math class in the java.lang package contains a group of static
methods and two constants that support mathematical calculations.
This class cannot be extended (final) and no instance can be made
(private constructor).

Truncation Methods

● double ceil(double d) – Returns the smallest integer that is not
less than d

● double floor(double d) – Returns the largest integer that is not
greater than d

● int round(float f) – Returns the closest int to f

● long round(double d) – Returns the closest long to d

9

9-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Math Class

Variations on min , max, and abs

● double abs(double d) – Returns the absolute value of d;
likewise for float , int , and long

● double min(double d1, double d2) – Returns the smaller of
d1 and d2; likewise for float , int , and long

● double min(double d1, double d2) – Returns the greater of
d1 and d2; likewise for float , int , and long

Trigonometry Functions

● double sin(double d) – Returns the sine of d; likewise for cos
(cosine), and tan (tangent)

● double asin(double d) – Returns the arc sine of d; likewise for
acos (arc cosine), and atan (arc tangent)

● double toDegrees(double r) – Converts radians to degrees

● double toRadiansdouble d) – Converts degrees to radians

Logarithm Functions

● double log(double d) – Returns the natural logarithm of d

● double exp(double d) – Returns e raised to the power of d

Other Functions

● double sqrt(double d) – Returns the square root of d

● double pow(double d1, double d2) – Returns the value of d1
raised to the power of d2

● double random() – Returns a random number between 0.0
and 1.0

Constants

● PI – The double value that is closer to any other than to pi, the
ratio of a circle’s circumference to its diameter

● E – The double value that is closer to any other than to e, the base
of the natural logarithms

9

Text-Based Applications 9-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The String Class

A String object is an immutable (cannot be changed) sequence of
Unicode characters.

Methods That Create New Strings

● String concat(String s) – Returns a new string consisting of
this string followed by the s string

● String replace(String old, String new) – Returns a new
string which is a copy of this string with the new string replacing
all occurrences of the old string

● String substring(int start, int end) – Returns a portion
of this string starting at the start index and ending at end (An
alternate method defaults end to the length of the string)

● String toLowerCase() – Returns a new string consisting of this
string converted to lower case

● String toUpperCase() – Returns a new string consisting of this
string converted to upper case

9

9-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The String Class

Search Methods

● boolean endsWith(String s) – Returns true if this string
ends with s

● boolean startsWith(String s) – Returns true if this string
starts with s

● int indexOf(String s) – Returns index within this string that
starts with s; likewise for lastIndexOf but a reverse search

● int indexOf(int ch) – Returns index within this string of the
first occurrence of the character ch ; likewise for lastIndexOf but
a reverse search

● int indexOf(String s, int offset) – Returns index within
this string that matches with s starting at offset ; likewise for
lastIndexOf but a reverse search starting at offset

● int indexOf(int ch, int offset) – Returns index within
this string of the first occurrence of the character ch starting at
offset ; likewise for lastIndexOf but a reverse search starting at
offset

Comparison Methods

● boolean equals(String s) – Returns true if this string is
equal to (character by character) the string s

● boolean equalsIgnoreCase(String s) – Returns true if this
string is equal to (ignoring case) the string s

● int compareTo(String s) – Performs a lexical comparison
between this string and s; returns a negative int if this string is
less than s, a positive int if this is greater than s, or zero if the
two strings are equal

Other Methods

● char charAt(int index) – Returns the character at the index

● int length() – Returns the length of the string

9

Text-Based Applications 9-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The StringBuffer Class

A StringBuffer object is a mutable sequence of Unicode characters.
Never confuse a String and a StringBuffer ; there is no inheritance
relationship between them. You cannot assign a String object to a
variable that is declared as a StringBuffer , nor can you assign a
StringBuffer to a String variable. However, you can create a new
String from a StringBuffer by calling the toString method on the
buffer object. You can create a StringBuffer from a String by using
the third constructor listed below.

Constructors

● StringBuffer() – Creates an empty string buffer

● StringBuffer(int capacity) – Creates an empty string buffer
with a specified initial capacity

● StringBuffer(String initialString) – Creates a string buffer
that initially contains the specified string

9

9-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The StringBuffer Class

Modification Methods

● StringBuffer append(String s) – Modifies this string buffer
by appending the s string onto the end of the buffer; likewise,
there are overloaded methods for the following parameter types:
boolean , char , char[] , double , float , int , long , and Object

● StringBuffer insert(int offset, String s) – Modifies
this string buffer by inserting the s string into the buffer at the
specified offset location; likewise, there are overloaded methods
for the following parameter types: boolean , char , char[] ,
double , float , int , long , and Object

● StringBuffer reverse() – Reverses the order of the string
buffer

Note – These modification methods return the string buffer itself, so
that they can be sequenced together:
buffer.append(3).append(" blind ").append("mice;")

.append(’\n’).append("see how they run.”);

● void setCharAt(int index, char ch) – Modifies this string
buffer by changing the character at the location specified by index
to the specified character, ch

● void setLength(int newLength) – Sets the length of the string
buffer

9

Text-Based Applications 9-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

A collection is a single object representing a group of objects. The
objects in the collection are called elements. Collections typically deal
with many types of objects, all of which are of a particular kind (that
is, they all descend from a common parent type).

● Collection – A group of objects with no specific ordering;
duplicates are permitted. Also known as a bag or multiset.

● Set – An unordered collection; no duplicates are permitted.

● List – An ordered collection; duplicates are permitted.

✓ If a structured query language (SQL) database API furnishes a collection and the GUI
toolkit expects a collection, these APIs interoperate seamlessly because they take
collections as input and return collections as output.

Collections maintain references to objects of type Object . This allows
any object to be stored in the collection. It also necessitates the use of
correct casting before you can use the object, after retrieving it from
the collection.

9

9-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Figure 9-1 The Collection Interface and Class Hierarchy

The HashSet class supplies an implementation of the Set interface.
The ArrayList and LinkedList classes supply an implementation of
the List interface.

Note – This discussion of the Collections API is a simplification of the
complete API (which includes many more methods, more interfaces,
and several intermediate abstract classes). For more information, read
"Introduction to the Collections Framework" at the URL:
http://developer.java.sun.com/developer/onlineTraining/co
llections/

Collection
<<interface>>

Set
<<interface>>

List
<<interface>>

HashSet

ArrayList LinkedList

+add(element : Object) : boolean

+size() : int
+remove(element : Object) : boolean

+isEmpty() : boolean
+contains(element : Object) : boolean
+iterator() : Iterator

+add(index : int, element : Object)

+get(index : int) : Object
+remove(index : int) : Object

+set(index : int, element Object)
+indexOf(element : Object) : int
+listIterator() : ListIterator

9

Text-Based Applications 9-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

A Set Example

In the following example, the program declares a variable (set) of
type Set and is initialized to a new HashSet object. It then adds a few
elements and prints the set to standard output. The attempt to add the
duplicate items on lines 11 and 12 fails; thus the add method returns
false .

1 import java.util.*;
2
3 public class SetExample {
4 public static void main(String[] args) {
5 Set set = new HashSet();
6 set.add("one");
7 set.add("second");
8 set.add("3rd");
9 set.add(new Integer(4));
10 set.add(new Float(5.0F));
11 set.add("second"); // duplicate, not added
12 set.add(new Integer(4)) // duplicate, not added
13 System.out.println(set);
14 }
15 }

The output generated from this program might be:

[one, second, 5.0, 3rd, 4]

Note – On line 13 the program prints the set object to standard
output. This works because the HashSet class overrides the toString
method that creates a comma-separated sequence of the items
delimited by the open and close braces.

9

9-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

A List Example

In the following example, the program declares a variable (list) of
type List and is initialized to a new ArrayList object. It then adds a
few elements and prints the list to standard output. Because lists allow
duplicates, lines 11 and 12 succeed.

1 import java.util.*;
2
3 public class ListExample {
4 public static void main(String[] args) {
5 List list = new ArrayList();
6 list.add("one");
7 list.add("second");
8 list.add("3rd");
9 list.add(new Integer(4));
10 list.add(new Float(5.0F));
11 list.add("second"); // duplicate, is added
12 list.add(new Integer(4)); // duplicate, is added
13 System.out.println(list);
14 }
15 }

The output generated from this program is:

[one, second, 3rd, 4, 5.0, second, 4]

✓ Notice that we could have used the declaration Collection list on line 5 and the rest of
the code would still be the same.

9

Text-Based Applications 9-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Iterators

A collection can be scanned using an iterator. The basic Iterator
interface allows scanning forward through any collection. In the case
of an iteration over a set, the order is non-deterministic. The order of
an iteration over a list moves forward through the list elements. A
List object also supports a ListIterator , which allows the list to be
scanned backwards.

The following code fragment demonstrates the use of an iterator:

 List list = new ArrayList();
 // add some elements
 Iterator elements = list.iterator();
 while (elements.hasNext()) {
 System.out.println(elements.next());
 }

9

9-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Iterators (Continued)

Figure 9-2 The Iterator Interface Hierarchy

The remove method allows the code to remove the current item in the
iteration (the item returned by the most recent next or previous
method). If removal is not supported by the underlying collection,
then an UnsupportedOperationException is thrown.

While using a ListIterator it is common to move through the list in
only one direction: forward using next and backward using
previous . If you use previous immediately after next , then you will
get back the same element; likewise for calling next after previous .

The set method changes the element of the collection currently
referenced by the iterator’s cursor. The add method inserts the new
element into the collection immediately before the iterator’s cursor.
Therefore, if you call previous after an add, then it will return the
newly added element. However, a call to next will not be affected. If
setting or adding is not supported by the underlying collection, then
an UnsupportedOperationException is thrown.

Iterator
<<interface>>

ListIterator
<<interface>>

+hasNext() : boolean
+next() : Object
+remove()

+hasPrevious() : boolean
+previous() : Object
+add(element : Object)
+set(element : Object)

9

Text-Based Applications 9-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Maps

A map is a collection of arbitrary associations between a key object
and a value object. In a given map, there may only be one entry for a
given key.

The put method inserts a key and value pair into the map. If the key
already exists, then the new value replaces the old value. The get
method returns the value associated with a given key, or null if the
key does not exist in the map.

The HashMap class implements the Map interface.

Iteration over a map can be accomplished by retrieving the set of keys,
using the keySet method, and then iterating over the key set and
retrieving the values as you go along.

9

9-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

A Map Example

The following program demonstrates the use of a map. In this case the
map is between a word (String) and the number of times the word
has been used (Integer).

1 import java.util.Map;
2 import java.util.HashMap;
3 import java.util.Iterator;
4 import java.io.FileReader;
5
6 public class MapExample {
7 public static void main(String[] args)
8 throws java.io.FileNotFoundException {
9 Map word_count_map = new HashMap();
10 FileReader reader = new FileReader(args[0]);
11 Iterator words = new WordStreamIterator(reader);
12
13 while (words.hasNext()) {
14 String word = (String) words.next();
15 String word_lowercase = word.toLowerCase(); // this is the key
16 Integer frequency = (Integer)word_count_map.get(word_lowercase);
17
18 if (frequency == null) {
19 frequency = new Integer(1);
20 } else {
21 int value = frequency.intValue();
22 frequency = new Integer(value + 1);
23 }
24 word_count_map.put(word_lowercase, frequency);
25 }
26 System.out.println(word_count_map);
27 }
28 }

Running this program on the first paragraph of Shakespeare’s Romeo
and Juliet generates the following output:

> java MapExample romeo_and_juliet.txt
{unclean=1, with=2, scene=1, passage=1, our=3, ancient=1, two=3, these=1, mark’d=1,
patient=1, do=1, cross’d=1, where=2, lovers=1, fatal=1, stage=1, verona=1, new=1,
bury=1, forth=1, strife=1, lay=1, fair=1, we=1, alike=1, could=1, piteous=1, is=1,
hands=1, mend=1, in=2, nought=1, both=1, continuance=1, life=1, if=1, shall=2, the=5,
traffic=1, and=1, a=1, toil=1, take=1, which=2, loins=1, of=5, here=1, end=1, what=1,
civil=2, their=6, love=1, but=1, makes=1, miss=1, rage=1, foes=1, you=1, ears=1,
whose=1, now=1, to=2, dignity=1, fearful=1, pair=1, star=1, strive=1, households=1,
hours’=1, grudge=1, break=1, misadventured=1, mutiny=1, attend=1, overthrows=1,
parents’=2, blood=1, from=2, children’s=1, remove=1, death=2}

9

Text-Based Applications 9-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Sorting

Sorting is fundamental to any complex business application, especially
when generating reports. In the new Java 2 SDK Collections API,
several implementations of sorting have been included.

Sorting arrays is accomplished by the set of overloaded Arrays.sort
method. There are two variations: sort(<type> array[]) which
sorts the whole array and sort(<type> array[], int fromIndex,
int toIndex) which sorts a portion of the array. The <type> variable
can be any primitive type except boolean . There are four methods for
sorting arrays of Objects:

● Arrays.sort(Object array[])

● Arrays.sort(Object array[], int fromIndex, int
toIndex)

● Arrays.sort(Object array[], Comparator comparator)

● Arrays.sort(Object array[], int fromIndex, int
toIndex, Comparator comparator)

9

9-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Sorting (Continued)

Since the sorting algorithm must compare two objects (to determine
their order), the class of the objects in the array must implement the
Comparable interface or an object implementing the Comparator
interface must be passed into the sorting algorithm (using the second
or fourth variation listed above).

The Comparable interface supports one method: compareTo . This
method compares this object to the element parameter. If this is a "less
than" element, then a negative value is returned; if this is a "greater
than" element, then a positive value is returned; otherwise zero is
returned.

Figure 9-3 The Comparable Interface

The Comparator interface supports two methods: compare and
equals . The compare method takes two parameters, e1 and e2, both
of type Object. It returns a negative value if e1 "is less than" e2, a
positive value if e1 "is greater than" e2, otherwise zero. The equals
method is used to determine if two comparator objects are equal. You
do not have to implement this method because the class that
implements the Comparator interface can inherit the default
implementation supplied by the Object class.

Figure 9-4 The Comparator Interface

Comparable
<<interface>>

+compareTo(element : Object) : int

Comparator
<<interface>>

+compare(e1 : Object, e2 : Object) : int
+equals(object : Object) : boolean

9

Text-Based Applications 9-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Sorting Examples
The following program demonstrates sorting an array of doubles:

1 import java.util.Arrays;
2 import java.text.DecimalFormat;
3
4 public class SortingExample1 {
5 public static void main(String[] args) {
6 double[] random_values = new double[10];
7
8 // populate the array with random numbers
9 for (int i = 0; i < random_values.length; i++) {
10 random_values[i] = Math.random();
11 }
12
13 // print out unsorted array
14 System.out.println("Unsorted Array:");
15 printArray(random_values);
16
17 // print out sorted array
18 Arrays.sort(random_values);
19 System.out.println("Sorted Array:");
20 printArray(random_values);
21 }
22
23 private static void printArray(double[] array) {
24 System.out.print(’[’);
25 for (int i = 0; i < array.length; i++) {
26 System.out.print(FORMAT.format(array[i]));
27 if ((i + 1) < array.length) {
28 System.out.print(", ");
29 }
30 }
31 System.out.println(’]’);
32 }
33 private static DecimalFormat FORMAT = new DecimalFormat("0.000");
34 }

Running this program generates the following output:

Unsorted Array:
[0.604, 0.717, 0.835, 0.050, 0.662, 0.168, 0.919, 0.958, 0.637, 0.011]
Sorted Array:
[0.011, 0.050, 0.168, 0.604, 0.637, 0.662, 0.717, 0.835, 0.919, 0.958]

Note – The java.util.Arrays class should not be confused with the
java.lang.reflect.Array class or a simple array.

9

9-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Sorting Examples (Continued)

The following program demonstrates sorting a list of the word count
map entries:

1 import java.util.*;
2
3 public class SortingExample2 {
4 public static void main(String[] args)
5 throws java.io.FileNotFoundException {
6 Map word_count_map = new WordCountMap(args[0]);
7 Set entry_set = word_count_map.entrySet();
8
9 System.out.println("Unsorted Entry Set:\n" + entry_set);
10
11 // Create a list of the entries and sort it alphabetically
12 List entry_list = new ArrayList(entry_set);
13 Collections.sort(entry_list, new AlphaComparator());
14 System.out.println("\nEntry Set (sorted alpha):\n" + entry_list);
15
16 // Sort the list by frequency
17 Collections.sort(entry_list, new FreqComparator());
18 System.out.println("\nEntry Set (sorted by freq):\n" + entry_list);
19 }
20
21 private static class AlphaComparator implements Comparator {
22 public int compare(Object e1, Object e2) {
23 String word1 = (String) ((Map.Entry) e1).getKey();
24 String word2 = (String) ((Map.Entry) e2).getKey();
25 return word1.compareTo(word2);
26 }
27 }
28 private static class FreqComparator implements Comparator {
29 public int compare(Object e1, Object e2) {
30 Integer freq1 = (Integer) ((Map.Entry) e1).getValue();
31 Integer freq2 = (Integer) ((Map.Entry) e2).getValue();
32 return freq2.compareTo(freq1);
33 }
34 }
35 }

Note – The WordCountMap class encapsulates the basic code on ‘‘A
Map Example’’ section on page 9-34. The constructor takes a file name
as its argument and processes the "word count" of the text in that file.

9

Text-Based Applications 9-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Sorting Examples (Continued)

Running this program on the first paragraph of Shakespeare’s Romeo
and Juliet generates the following output:

> java SortingExample2 romeo_and_juliet.txt
Unsorted Entry Set:
[unclean=1, with=2, scene=1, passage=1, our=3, ancient=1, two=3, these=1, mark’d=1,
patient=1, do=1, cross’d=1, where=2, lovers=1, fatal=1, stage=1, verona=1, new=1,
bury=1, forth=1, strife=1, lay=1, fair=1, we=1, alike=1, could=1, piteous=1, is=1,
hands=1, mend=1, in=2, nought=1, both=1, continuance=1, life=1, if=1, shall=2, the=5,
traffic=1, and=1, a=1, toil=1, take=1, which=2, loins=1, of=5, here=1, end=1, what=1,
civil=2, their=6, love=1, but=1, makes=1, miss=1, rage=1, foes=1, you=1, ears=1,
whose=1, now=1, to=2, dignity=1, fearful=1, pair=1, star=1, strive=1, households=1,
hours’=1, grudge=1, break=1, misadventured=1, mutiny=1, attend=1, overthrows=1,
parents’=2, blood=1, from=2, children’s=1, remove=1, death=2]

Entry Set (sorted alpha):
[a=1, alike=1, ancient=1, and=1, attend=1, blood=1, both=1, break=1, bury=1, but=1,
children’s=1, civil=2, continuance=1, could=1, cross’d=1, death=2, dignity=1, do=1,
ears=1, end=1, fair=1, fatal=1, fearful=1, foes=1, forth=1, from=2, grudge=1, hands=1,
here=1, hours’=1, households=1, if=1, in=2, is=1, lay=1, life=1, loins=1, love=1,
lovers=1, makes=1, mark’d=1, mend=1, misadventured=1, miss=1, mutiny=1, new=1, nought=1,
now=1, of=5, our=3, overthrows=1, pair=1, parents’=2, passage=1, patient=1, piteous=1,
rage=1, remove=1, scene=1, shall=2, stage=1, star=1, strife=1, strive=1, take=1, the=5,
their=6, these=1, to=2, toil=1, traffic=1, two=3, unclean=1, verona=1, we=1, what=1,
where=2, which=2, whose=1, with=2, you=1]

Entry Set (sorted by freq):
[their=6, of=5, the=5, our=3, two=3, civil=2, death=2, from=2, in=2, parents’=2,
shall=2, to=2, where=2, which=2, with=2, a=1, alike=1, ancient=1, and=1, attend=1,
blood=1, both=1, break=1, bury=1, but=1, children’s=1, continuance=1, could=1,
cross’d=1, dignity=1, do=1, ears=1, end=1, fair=1, fatal=1, fearful=1, foes=1, forth=1,
grudge=1, hands=1, here=1, hours’=1, households=1, if=1, is=1, lay=1, life=1, loins=1,
love=1, lovers=1, makes=1, mark’d=1, mend=1, misadventured=1, miss=1, mutiny=1, new=1,
nought=1, now=1, overthrows=1, pair=1, passage=1, patient=1, piteous=1, rage=1,
remove=1, scene=1, stage=1, star=1, strife=1, strive=1, take=1, these=1, toil=1,
traffic=1, unclean=1, verona=1, we=1, what=1, whose=1, you=1]

9

9-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Collections API

Collections in JDK 1.1

The Collections API is a Java 2 SDK feature, but there were a few
collections classes in the JDK 1.0 and JDK 1.1. These classes still exist
in the SDK with the same interface, but they have also been retooled to
interact with the new Collections API.

The Vector class implements the List interface. The Stack class is an
extension of Vector that adds the typical stack operations: push , pop ,
and peek . The Hashtable is an implementation of Map. The
Properties class (reviewed in "System Properties" on page 9-4) is an
extension of Hashtable that only uses String s for keys and values.
Each of these collections has an elements method which returns an
enumeration object. Enumeration is an interface similar, but
incompatible with the Iterator interface. For example, hasNext is
replaced by hasMoreElements in the Enumeration interface.

All of these collection classes are thread-safe, which makes them a
"heavy weight" implementation.

9

Text-Based Applications 9-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Collections to Represent Aggregation

Exercise objective – Become familiar with collections and iterators by
rewriting the Banking Project to use the Java 2 SDK Collections API
instead of arrays.

Preparation

To successfully complete this lab, you must understand the concepts of
a set, iteration, and sorting.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod09). A listing of this directory will show
six subdirectories. These two will be found in directories called
exercise3 and exercise4 .

Exercise 3: Use Collections to Represent Multiplicity (Level 2 Lab)

In this exercise, you will replace the arrays code that you used to
implement multiplicity in the relationships between bank and
customer, and customer and their accounts.

Exercise 4: Sort Customers (Level 3 Lab)

In this exercise, you will sort the list of bank customers by their names.
This will require you to modify the Customer class to implement the
Comparable interface.

9

9-42 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the javadoc Tool

Documentation of your code is important to the success of future
maintenance efforts for stand-alone applications and is critical to the
use of APIs. In this section we will briefly describe the javadoc tool,
comment tags, and how to use the tool.

Hopefully you already have some experience in using the Java 2 SDK
documentation. Let’s now look at how you can generate
documentation HTML pages for your projects.

> javadoc -private -d ../doc/api banking banking.domain /
 banking.reports

Typically if you are generating documentation for an API you would
use the -public option (or leave it out because it is the default).
However, it is common to use the -private option to generate
documentation that is shared among an application project team.

Note – Read the on-line documentation for more details.

9

Text-Based Applications 9-43
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the javadoc Tool

Documentation Tags

The javadoc tool parses the specified source files for comment lines
that start with /** and end with */ . These are used by the tool to
document the declaration that the comment immediately precedes.

The first sentence of the comment is called the "summary sentence"
and it should be a complete, concise description of the declaration.
Text following the summary sentence can be used to give details about
the declaration, including usage information. HTML tags can be
included in any portion of the text, such as using the <P> tag to
separate paragraphs, to generate lists, (etc) to format the text.

Also within the comment block, javadoc uses tags to identify special
elements of the declaration, such as the return value of a method. The
table above shows a set of the most common javadoc tags, their
meaning, and with which declarations they may be used.

9

9-44 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the javadoc Tool

Example

We will use the following example in our tests of javadoc :

1 /*
2 * This is an example using javadoc tags.
3 */
4
5 package mypack;
6
7 import java.util.List;
8
9 /**
10 * This class contains a bunch of documentation tags.
11 * @author Bryan Basham
12 * @version 0.5(beta)
13 */
14 public class DocExample {
15
16 /** A simple attribute tag. */
17 private int x;
18
19 /**
20 * This variable a list of stuff.
21 * @see #getStuff()
22 */
23 private List stuff;
24
25 /**
26 * This constructor initializes the x attribute.
27 * @param x_value the value of x
28 */
29 public DocExample(int x_value) {
30 this.x = x_value;
31 }
32
33 /**
34 * This method return some stuff.
35 * @throws IllegalStateException if no stuff is found
36 * @return List the list of stuff
37 */
38 public List getStuff()
39 throws IllegalStateException {
40 if (stuff == null) {
41 throw new java.lang.IllegalStateException("ugh, no stuff");
42 }
43 return stuff;
44 }
45 }

9

Text-Based Applications 9-45
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the javadoc Tool

Example (Continued)

> javadoc -d doc/api/public DocExample.java

9

9-46 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the javadoc Tool

Example (Continued)

> javadoc -private -d doc/api/private DocExample.java

9

Text-Based Applications 9-47
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Deprecation

In JDK 1.1, a significant effort was made to standardize the names of
methods. As a result, in Java 2 SDK, a significant number of class
constructors and method calls are obsolete. They have been replaced
by method names that follow a more standardized naming convention
and, in general, make life less complicated for the programmer.

For example, in the JDK 1.0 version of the java.awt.Component class:

● The methods for changing or getting the size of a component are
resize() and size().

● The methods for changing or getting the bounding box of a
component are reshape() and bounds().

9

9-48 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Deprecation

In the JDK 1.1 version of java.awt.Component:

● Method names that begin with the words set and get indicate the
primary operation of the method, respectively. For example:

▼ setSize() and getSize()

▼ setBounds() and getBounds()

Whenever you are moving code from JDK 1.0 to JDK 1.1 or higher, or
even if you are using code that previously worked with JDK 1.0, you
should compile the code with the -deprecation flag.

javac -deprecation MyFile.java

✓ Sometimes whole classes are changed between JDK 1.0 and JDK 1.1. Unfortunately, these
were not deprecated, so the compiler issues an error message stating that the class
cannot be found. This is annoying, but unavoidable.

9

Text-Based Applications 9-49
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Deprecation

The -deprecation flag reports any methods used within the class that
are deprecated. For example, consider a utility class called
DateConverter , which converts a date in the format mm/dd/yy to the
day of the week.

1 package myutilities;
2
3 import java.util.*;
4 import java.text.*;
5
6 public final class DateConverter {
7 private static final String DAY_OF_THE_WEEK [] =
8 {"Sunday", "Monday", "Tuesday", "Wednesday",
9 "Thursday", "Friday", "Saturday"};
10
11 public static String getDayOfWeek (String theDate){
12 int month, day, year;
13
14 StringTokenizer st = new StringTokenizer (theDate, "/");
15
16 month = Integer.parseInt(st.nextToken ());
17 day = Integer.parseInt(st.nextToken());
18 year = Integer.parseInt(st.nextToken());
19 Date d = new Date (year, month, day);
20
21 return (DAY_OF_THE_WEEK[d.getDay()]);
22 }
23 }

When this code is compiled under Java 2 SDK with the
-deprecation flag, you get the following:

javac -deprecation DateConverter.java
DateConverter.java:19: Note: The constructor java.util.Date(int,int,int)
has been deprecated.
 Date d = new Date (year, month, day);
 ̂
DateConverter.java:21: Note: The method int getDay() in class
java.util.Date has been deprecated.
 return (day_of_the_week[d.getDay()]);
 ̂
Note: DateConverter.java uses or overrides a deprecated API. Please
consult the documentation for a better alternative. 1 warning

9

9-50 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Deprecation

The rewritten DateConverter class looks like the following:

1 package myutilities;
2
3 import java.util.*;
4 import java.text.*;
5
6 public final class DateConverter {
7 private static String day_Of_The_Week[] =
8 {"Sunday", "Monday", "Tuesday", "Wednesday",
9 "Thursday", "Friday", "Saturday"};
10
11 public static String getDayOfWeek (String theDate) {
12 Date d = null;
13 SimpleDateFormat sdf = new SimpleDateFormat("MM/dd/yy");
14
15 try {
16 d = sdf.parse (theDate);
17 } catch (ParseException e) {
18 System.out.println (e);
19 e.printStackTrace();
20 }
21
22 // Create a GregorianCalendar object
23 Calendar c =
24 new GregorianCalendar(
25 TimeZone.getTimeZone("EST"),Locale.US);
26 c.setTime (d);
27
28 return(
29 day_Of_The_Week[(c.get(Calendar.DAY_OF_WEEK)-1)]);
30 }
31 }

Here the 1.2 version uses two new classes: SimpleDateFormat , a class
used to take any String date format and create a Date object, and the
GregorianCalendar class, used to create a calendar with the local
time zone and locale.

9

Text-Based Applications 9-51
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using the jar Tool

✓ JAR stands for Java ARchive.

All applications and frameworks need to be deployed. Because Java
technology programs are not linked into an independent executable
(or shared library), Java 2 SDK supports a means to combine a set of
files (usually .class files) into a single archive file (called a JAR file)
that can be delivered using a floppy, file transfer, and even
downloaded from a Web site. The jar tool is used to create (and
extract, if necessary) these archive files.

The jar tool is a general purpose tool that can archive more than just
class files; it can include HTML pages, media files (such as images,
sounds, and video), and even text files. Not only does it create an
archive of multiple files, but it also compresses these files as they are
loaded into the JAR.

As mentioned in "Directory Layout and Packages" on page 2-28, a JAR
file can be used in your CLASSPATH or stored in the JRE library
directory.

9

9-52 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Building a System

Exercise objective – You will gain experience using the javadoc and
jar tools to build a complete system.

Preparation

To successfully complete this lab, you must understand the concepts of
using javadoc comment tags, and running the javadoc and jar tools.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod09). A listing of this directory will show
six subdirectories. These two will be found in the directories called
exercise5 and exercise6 .

Exercise 5: Document the Customer Class (Level 2 Lab)

In this exercise you will use javadoc comment tags to document the
customer class. You will then generate the API documentation for the
entire banking package.

Exercise 6: Build an Archive of the Bank Project (Level 3 Lab)

In this exercise you will create a JAR file of the Banking project. You
will then run the reports program using only the JAR file.

9

Text-Based Applications 9-53
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Building Text-Based Applications

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

9

9-54 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that
you can:

❑ Write a program that uses command-line arguments and system
properties

❑ Write a program that reads from standard input

❑ Write a program that can create, read, and write files

❑ Describe the basic hierarchy of collections in Java 2 SDK

❑ Write a program that uses sets and lists

❑ Write a program to iterate over a collection

❑ Write a program to sort an array or a list

❑ Describe the collection classes that existed before Java 2 SDK

❑ Describe and use the javadoc and jar tools

❑ Identify deprecated classes and explain how to migrate from
JDK 1.0 to JDK 1.1 to Java 2 JDK

9

Text-Based Applications 9-55
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

Many applications are text-based. What other styles of programs exist?

What features does the Java application environment have that
support user interface development?

How were interfaces used in this module? Could they have been
replaced by some other mechanism, such as abstract classes?

10-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building JavaGUIs 10

Objectives

Upon completion of this module, you should be able to:

● Describe the Abstract Windowing Toolkit (AWT) package and its
components

● Define the terms containers, components, and layout managers, and
describe how they work together to build a graphical user
interface (GUI)

● Use layout managers

● Use the FlowLayout , BorderLayout , GridLayout , and
CardLayout managers to achieve a desired dynamic layout

● Add components to a container

● Use the Frame and Panel containers appropriately

● Describe how complex layouts with nested containers work

● In a Java technology program, identify the following:

▼ Containers

▼ The associated layout managers

▼ The layout hierarchy of all components

This module covers the setup and layout of graphical user interfaces.
It introduces the AWT, a package of classes from which GUIs are built.

10

10-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answer to
this question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● As a platform-independent programming language, how is Java
technology used to make the GUI platform independent?

✓ Most interactive user input and output is done through a GUI. The Java platform provides
a number of classes in the AWT package to make programming and setup of GUIs very
easy. The AWT contains classes of Components from which GUIs are pieced together, and
contains other classes which deal with other aspects, such as color, font, and layout of
components. This module explains how GUIs are put together and formatted, and
describes some of the Components from which GUIs are built.

10

Building Java GUIs 10-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The AWT

The AWT provides basic GUI components that are used in Java applets
and applications. The AWT provides a machine-independent interface
for applications. This ensures that what appears on one computer is
comparable to what appears on another.

Before looking at the AWT, briefly review the object hierarchy.
Remember that super classes can be extended and their properties
inherited. Also, classes can be abstract, meaning that they are
templates that are subclassed to provide concrete implementations of
the class.

Every GUI component that appears on the screen is a subclass of the
abstract class Component or MenuComponent . That is, basic GUI
components inherit from the Component class a number of methods
and instance variables. Likewise, menu components inherit from the
MenuComponent class.

10

10-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The AWT

Container is an abstract subclass of Component , which allows other
components to be nested inside it. These components can also be
containers allowing other components to be nested inside, which
creates a complete hierarchical structure. Containers are helpful in
arranging GUI components on the screen. A Panel is the simplest
concrete subclass of Container . Another subclass of Container is a
Window.

10

Building Java GUIs 10-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The java.awt Package

The java.awt package contains classes that generate GUI
components. A basic overview of this package is shown in Figure 10-1.
The classes shown in bold type highlight the main focus of this
module.

Figure 10-1 java.awt Package

java.lang. Object

Button
Canvas
Checkbox
Choice
Container
Label
List
Scrollbar
TextComponent

BorderLayout
CardLayout
CheckboxGroup
Color
Dimension
Event
Font
FlowLayout
FontMetrics
Graphics
GridBagLayout
GridLayout
Image
Insets
Point
Polygon
Rectangle
Toolkit
MenuComponent
Component

MenuBar
MenuItem Menu -- PopupMenu

CheckboxMenuItem

TextArea
TextField

Panel
Window
ScrollPane

Dialog
Frame

Applet (java.applet package)

FileDialog

Exceptions – AWTException Errors – AWTError

10

10-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building Graphical User Interfaces

Containers

GUI components are added to a container using the add method.

There are two main types of containers: Window and Panel .

A Window is a free-standing native window on the display that is
independent of other containers. There are two important types of
Window: Frame and Dialog . Frame is a window with a title and
resizing corners. Dialog does not have a menu bar. Although you can
move it, you cannot resize it.

10

Building Java GUIs 10-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building Graphical User Interfaces

Containers (Continued)

A Panel is contained within another Container , or inside a Web
browser’s window. Panel identifies a rectangular area into which you
can place other components. You must place Panel into a Window (or a
subclass of Window) to be displayed.

Note – The fact that a container can hold not only components, but
also other containers, is critical and fundamental to building complex
layouts.

ScrollPane is also a subclass of Container . It is discussed in
Appendix C, "The AWT Component Library."

10

10-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building Graphical User Interfaces

Positioning Components

The position and size of a component in a container is determined by
a layout manager. A container keeps a reference to a particular
instance of a layout manager. When the container needs to position a
component, it invokes the layout manager to do so. The same
delegation occurs when deciding on the size of a component. The
layout manager takes full control over all of the components within
the container. It is responsible for computing and defining the
preferred size of the object in the context of the actual screen size.

✓ The preferred size expresses how big a component will be displayed. For example, the
preferred size of a button is the size of the label text plus the border space and the
shadowed decorations that mark the boundary of the button. The preferred size is
platform dependent.

10

Building Java GUIs 10-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building Graphical User Interfaces

Component Sizing

Because the layout manager generally is responsible for the size and
position of components on its container, you should not normally
attempt to set the size or position of components yourself. If you try to
do so (using any of the methods setLocation , setSize or
setBounds), the layout manager can override your decision.

If you must control the size or position of components in a way that
cannot be done using the standard layout managers, you can disable
the layout manager by issuing the following method call to your
container:

cont.setLayout(null);

After this step, you must use setLocation , setSize or setBounds on
all components to locate them in the container.

This approach results in platform-dependent layouts due to the
differences between window systems and font sizes. A better approach
is to create a new subclass of LayoutManager .

10

10-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Frames

Frame is a subclass of Window. It is a Window with a title and resizing
corners. Frame inherits from Container so you can add components
to a Frame using the add method. The default layout manager for a
Frame is BorderLayout . You can change this using the setLayout
method.

The constructor Frame(String) in the Frame class creates a new,
invisible Frame object with the title specified by String . You add all
the components to the Frame while it is still invisible.

✓ The code on the next page (and all of the GUI examples in this course) has been rewritten
with Sun Educational Services’ new "GUI Coding Guidelines" which is currently in draft.
Please be aware of two things. First, make sure that students understand that these GUI
examples demonstrate one possible style of coding; it is not a standard and not the final
word. Second, this style was created based on a lot of feedback accumulated through the
ses_java e-mail list. The goal was to make our GUI coding examples more object-oriented
and flexible.

10

Building Java GUIs 10-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Frames

The following program creates a Frame that has a specific title, size,
and background color (Figure 10-2).

1 import java.awt.*;
2
3 public class FrameExample {
4 private Frame f;
5
6 public FrameExample() {
7 f = new Frame("Hello Out There!");
8 }
9
10 public void launchFrame() {
11 f.setSize(170,170);
12 f.setBackground(Color.blue);
13 f.setVisible(true);
14 }
15
16 public static void main(String args[]) {
17 FrameExample guiWindow = new FrameExample();
18 guiWindow.launchFrame();
19 }
20 }

Figure 10-2 Example Frame

Note – A Frame must be made visible (using a call to
setVisible(true)) and its size defined (using a call to setSize or
pack) before it is displayed on screen.

10

10-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Panels

Panel , like Frame, provides the space for you to attach any GUI
component, including other panels. Each Panel , which inherits from
Container , can have its own layout manager.

Once a Panel is created, you must add it to a Window or Frame to be
visible. This is done using the add method of the Container class.

The following program creates a small yellow Panel , and adds it to a
Frame (Figure 10-3).

10

Building Java GUIs 10-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Panels

1 import java.awt.*;
2
3 public class FrameWithPanel {
4 private Frame f;
5 private Panel pan;
6
7 public FrameWithPanel(String title) {
8 f = new Frame(title);
9 pan = new Panel();
10 }
11
12 public void launchFrame() {
13 f.setSize(200,200);
14 f.setBackground(Color.blue);
15 f.setLayout(null); // Override default layout mgr
16
17 pan.setSize(100,100);
18 pan.setBackground(Color.yellow);
19 f.add(pan);
20 f.setVisible(true);
21 }
22
23 public static void main(String args[]) {
24 FrameWithPanel guiWindow =
25 new FrameWithPanel("Frame with Panel");
26 guiWindow.launchFrame();
27 }
28 }

Figure 10-3 Example Panel

10

10-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Container Layouts

The layout of components in a container is usually governed by a
layout manager. Each container (such as Panel or Frame) has a default
layout manager associated with it, which can be changed by calling
setLayout.

The layout manager is responsible for deciding the layout policy and
size of each of its container’s child components.

✓ The layout manager gives first preference to the layout policy. If honoring a component’s
preferred size means violating the layout policy, the layout manager overrules the
component’s preferred size.

10

Building Java GUIs 10-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Container Layouts

Layout Managers

The following layout managers are included with the Java
programming language:

● FlowLayout – The default layout manager of Panel and Applet

● BorderLayout – The default layout manager of Window, Dialog ,
and Frame

● GridLayout

● CardLayout

● GridBagLayout

Note – The GridBagLayout manager is not discussed in-depth in this
module. For details about GridBagLayout , see Appendix D, ‘‘Using
the GridBagLayout."

10

10-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Container Layouts

Default Layout Managers

Figure 10-4 illustrates the default Layout Managers.

Figure 10-4 Layout Managers

Component

Container

Window

Frame Dialog

BorderLayout

Panel

Applet

FlowLayout

10

Building Java GUIs 10-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple FlowLayout Example

The following sample code demonstrates several important points,
which are discussed in the following sections.

1 import java.awt.*;
2
3 public class LayoutExample {
4 private Frame f;
5 private Button b1;
6 private Button b2;
7
8 public LayoutExample() {
9 f = new Frame("GUI example");
10 b1 = new Button("Press Me");
11 b2 = new Button("Don’t press Me");
12 }
13
14 public void launchFrame() {
15 f.setLayout(new FlowLayout());
16 f.add(b1);
17 f.add(b2);
18 f.pack();
19 f.setVisible(true);
20 }
21
22 public static void main(String args[]) {
23 LayoutExample guiWindow = new LayoutExample();
24 guiWindow.launchFrame();
25 }
26 }

This code creates the following:

Figure 10-5 Example of FlowLayout

10

10-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple FlowLayout Example

The main Method

The main method in line 23 of this example performs two actions.
First, it creates an instance of the LayoutExample object. Recall that
until an instance exists, there are no real data items called f , b1, and
b2 for use. The constructor (lines 8-12) creates three GUI objects:

f = new Frame(“GUI Example”)

This constructor creates an instance of the class Frame. Frame in the
Java programming language is a top-level window, with a title bar that
is defined by the constructor argument; “GUI Example” in this case,
resize handles, and other decorations, according to local conventions.
Frame has a 0x0 size and currently is not visible.

b1 = new Button(“Press Me”)
b2 = new Button(“Don’t Press Me”)

These constructors create instances of the class Button . A button is the
standard pushbutton taken from the local window toolkit. The button
label is defined by the string argument to the constructor.

Second, when the data space has been created, main calls the instance
method launchFrame in the context of that instance. In
launchFrame , the real action occurs.

f.setLayout(new FlowLayout())

This method creates an instance of the flow layout manager and
installs it in the Frame. The default layout manager for every frame,
BorderLayout , is not used for this example. The FlowLayout manager
is the simplest in the AWT and positions components somewhat like
words on a page, line by line. The FlowLayout centers each line by
default.

10

Building Java GUIs 10-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple FlowLayout Example

The main Method (Continued)

f.add(b1)
f.add(b2)

These method calls tell Frame f (which is a container) that it is to
contain the components b1 and b2. The size and position of b1 and b2
are under the control of the frame’s layout manager from this point
onward.

f.pack()

This method tells the frame to set a size that “neatly encloses” the
components that it contains. To determine what size to use for the
Frame, f.pack() queries the layout manager, which is responsible for
the size and position of all the components within the Frame.

f.setVisible(true)

This method causes the Frame, and all its contents, to become visible
to the user.

10

10-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

FlowLayout Manager

The FlowLayout used in the example for this topic positions
components on a line-by-line basis. Each time a line is filled, a new line
is started.

Unlike other layout managers, the FlowLayout manager does not
constrain the size of the components it manages, but instead allows
them to have their preferred size.

FlowLayout constructor arguments allow you to flush the components
to the left or to the right if you prefer that to the default centering
behavior.

You can specify gaps if you want to create a larger minimum space
between the components.

10

Building Java GUIs 10-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

FlowLayout Manager (Continued)

When the area being managed by a FlowLayout is resized by the user,
the layout can change. See Figure 10-6.

Figure 10-6 FlowLayout Resizing

After user or
program resizes

After user or
program resizes

10

10-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

FlowLayout Manager (Continued)

The following are examples of how to create FlowLayout objects and
install them using the setLayout method of class Container :

setLayout(new FlowLayout(
 int align,int hgap,int vgap));

The value of align must be FlowLayout.LEFT,
FlowLayout.RIGHT, or FlowLayout.CENTER . For example:

setLayout(new FlowLayout(FlowLayout.RIGHT, 20, 40));

The following constructs and installs a new FlowLayout with the
specified alignment and a default five-unit horizontal and vertical gap.

setLayout(new FlowLayout(int align);
setLayout(new FlowLayout(FlowLayout.LEFT));

The following constructs and installs a new FlowLayout with centered
alignment and a default five-unit horizontal and vertical gap:

setLayout(new FlowLayout());

10

Building Java GUIs 10-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

FlowLayout Manager (Continued)

The following sample code adds several buttons to a flow layout on a
Frame:

1 import java.awt.*;
2
3 public class FlowExample {
4 private Frame f;
5 private Button button1;
6 private Button button2;
7 private Button button3;
8
9 public FlowExample() {
10 f = new Frame("Flow Layout");
11 button1 = new Button("Ok");
12 button2 = new Button("Open");
13 button3 = new Button("Close");
14 }
15
16 public void launchFrame() {
17 f.setLayout(new FlowLayout());
18 f.add(button1);
19 f.add(button2);
20 f.add(button3);
21 f.setSize(100,100);
22 f.setVisible(true);
23 }
24
25 public static void main(String args[]) {
26 FlowExample guiWindow = new FlowExample();
27 guiWindow.launchFrame();
28 }
29 }

10

10-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

BorderLayout Manager

The BorderLayout manager provides a more complex scheme for
placing your components within a container. It is the default layout
manager for Frame and Dialog . The BorderLayout manager contains
five distinct areas: NORTH, SOUTH, EAST, WEST, and CENTER, indicated by
BorderLayout.NORTH , and so on.

NORTHoccupies the top of a frame, EASToccupies the right side, and so
on. The CENTERarea represents everything left over once the NORTH,
SOUTH, EAST, and WESTareas are filled. When the Window is stretched
vertically, the EAST, WEST, and CENTERregions are stretched, whereas
when the window is stretched horizontally, the NORTH, SOUTH, and
CENTERregions are stretched.

Note – The relative positions of the buttons do not change as the
window resizes, but the sizes of the buttons do change.

10

Building Java GUIs 10-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

BorderLayout Manager (Continued)

The following line:

setLayout(new BorderLayout());

constructs and installs a new BorderLayout with no gaps between the
components.

The following line:

setLayout(new BorderLayout(int hgap, int vgap);

constructs and installs a BorderLayout with the gaps between
components as specified by hgap and vgap .

You must add components to named regions in the BorderLayout
manager; otherwise, they will not be visible. Spell the region names
correctly; especially if you choose not to use constants (for instance,
add(button,"Center") instead of add(button,
BorderLayout.CENTER)). Spelling and capitalization are crucial.

You can use a BorderLayout manager to produce layouts with
elements that stretch in one direction, the opposite direction, or both,
when resized.

If you leave a region of a BorderLayout unused, it behaves as if its
preferred size is zero by zero. The CENTERregion still appears as
background even if it contains no components.

10

10-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

BorderLayout Manager (Continued)

You can add only a single component to each of the five regions of the
BorderLayout manager. If you try to add more than one, only the last
one added is visible. A later example shows how you can use
intermediate containers to allow more than one component to be laid
out in the space of a single BorderLayout manager region.

Note – The layout manager honors the preferred height of the NORTH
and SOUTHcomponents, but forces them to be as wide as the container.
In the case of the EASTand WESTcomponents, the preferred width is
honored and the height is constrained.

10

Building Java GUIs 10-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

BorderLayout Manager (Continued)

The following code is a modification of the previous example and
demonstrates the behavior of the BorderLayout manager. You can set
the layout to use BorderLayout by using the setLayout method
inherited from the class Container .

1 import java.awt.*;
2
3 public class BorderExample {
4 private Frame f;
5 private Button bn, bs, bw, be, bc;
6
7 public BorderExample() {
8 f = new Frame("Border Layout");
9 bn = new Button("B1");
10 bs = new Button("B2");
11 bw = new Button("B3");
12 be = new Button("B4");
13 bc = new Button("B5");
14 }
15
16 public void launchFrame() {
17 f.add(bn, BorderLayout.NORTH);
18 f.add(bs, BorderLayout.SOUTH);
19 f.add(bw, BorderLayout.WEST);
20 f.add(be, BorderLayout.EAST);
21 f.add(bc, BorderLayout.CENTER);
22 f.setSize(200,200);
23 f.setVisible(true);
24 }
25
26 public static void main(String args[]) {
27 BorderExample guiWindow2 = new BorderExample();
28 guiWindow2.launchFrame();
29 }
30 }

10

10-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

BorderLayout Manager (Continued)

Figure 10-7 Example of BorderLayout

✓ BorderLayout regions can also be spelled out (such as, f.add(bn, "North")). However,
runtime exceptions can occur for misspellings (including capitalization mistakes). Using
predefined constants such as borderLayout.NORTH is preferred, because errors will be
caught at compile time instead of runtime.

After window is resized

After window is resized

10

Building Java GUIs 10-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

GridLayout Manager

The GridLayout manager provides flexibility for placing components.
You create the manager with a number of rows and columns.
Components then fill up the cells defined by the manager. For
example, a GridLayout with three rows and two columns created by
the statement new GridLayout(3, 2) would create six cells.

As with the BorderLayout manager, the relative position of
components does not change as the area is resized. Only the sizes of
the components change.

The GridLayout manager always ignores the component’s preferred
size. The width of all cells is identical and is determined by dividing
the available width by the number of columns. Similarly, the height of
all cells is determined by dividing the available height by the number
of rows.

10

10-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

GridLayout Manager (Continued)

The order in which components are added to the grid determines the
cell that they occupy. Lines of cells are filled left to right, like text, and
the “page” is filled with lines from top to bottom.

The following line:

setLayout(new GridLayout());

creates and installs a GridLayout with a default of one column per
component in a single row.

The following line:

setLayout(new GridLayout(int rows, int cols);

creates and installs a grid layout with the specified number of rows
and columns. All components in the layout are given equal size.

The following lines:

setLayout(new GridLayout(
 int rows, int cols, int hgap, int vgap);

create and install a GridLayout with the specified number of rows and
columns. All components in the layout are given equal size. hgap and
vgap specify the respective gaps between components. Horizontal
gaps are placed between each of the columns. Vertical gaps are placed
between each of the rows.

Note – One, but not both, of the rows and columns can be zero. The
zero value parameter is treated as a flexible guideline. For example,
zero rows and two columns mean that there are always two columns,
but as few or many rows as are needed to hold all of the added
components.

10

Building Java GUIs 10-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

GridLayout Manager (Continued)

The following code produces the objects displayed in Figure 10-8:

1 import java.awt.*;
2
3 public class GridExample {
4 private Frame f;
5 private Button b1, b2, b3, b4, b5, b6;
6
7 public GridExample() {
8 f = new Frame("Grid Example");
9 b1 = new Button("1");
10 b2 = new Button("2");
11 b3 = new Button("3");
12 b4 = new Button("4");
13 b5 = new Button("5");
14 b6 = new Button("6");
15 }
16
17 public void launchFrame() {
18 f.setLayout (new GridLayout(3,2));
19
20 f.add(b1);
21 f.add(b2);
22 f.add(b3);
23 f.add(b4);
24 f.add(b5);
25 f.add(b6);
26
27 f.pack();
28 f.setVisible(true);
29 }
30
31 public static void main(String args[]) {
32 GridExample grid = new GridExample();
33 grid.launchFrame();
34 }
35 }

10

10-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

GridLayout Manager (Continued)

Figure 10-8 Example of GridLayout

After window is resized

After window is resized

10

Building Java GUIs 10-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

CardLayout Manager
The CardLayout manager enables you to treat the interface as a series
of cards, only one of which can be viewed at any time. You can use the
add method to add cards to a CardLayout . The add method takes a
String as an argument and identifies the Panel in the program. The
CardLayout manager’s show method switches to a new card on
request. The example for this topic demonstrates a single Frame that
shows five different Panel s with each mouse click. A mouse click in
one Panel switches the view to the other Panel , and so on.

Note – This example requires a knowledge of event handling, which is
covered in Module 11, "GUI Event Handling."

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class CardExample implements MouseListener {
5 private Panel p1, p2, p3, p4, p5;
6 private Label lb1, lb2, lb3, lb4, lb5;
7
8 // Declare a CardLayout object to call its methods.
9 private CardLayout myCard;
10 private Frame f;
11
12 public CardExample() {
13 f = new Frame ("Card Test");
14 myCard = new CardLayout();
15
16 // Create the panels that I want to use as cards.
17 p1 = new Panel();
18 p2 = new Panel();
19 p3 = new Panel();
20 p4 = new Panel();
21 p5 = new Panel();
22
23 // Create a label to attach to each panel
24 lb1 = new Label("This is the first Panel");
25 lb2 = new Label("This is the second Panel");
26 lb3 = new Label("This is the third Panel");
27 lb4 = new Label("This is the fourth Panel");
28 lb5 = new Label("This is the fifth Panel");
29 }

10

10-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

CardLayout Manager (Continued)

30
31 public void launchFrame() {
32 f.setLayout(myCard);
33
34 // change the color of each panel, so they are
35 // easily distinguishable
36 p1.setBackground(Color.yellow);
37 p1.add(lb1);
38 p2.setBackground(Color.green);
39 p2.add(lb2);
40 p3.setBackground(Color.magenta);
41 p3.add(lb3);
42 p4.setBackground(Color.white);
43 p4.add(lb4);
44 p5.setBackground(Color.cyan);
45 p5.add(lb5);
46
47 // Set up the event handling here.
48 p1.addMouseListener(this);
49 p2.addMouseListener(this);
50 p3.addMouseListener(this);
51 p4.addMouseListener(this);
52 p5.addMouseListener(this);
53
54 // Add each panel to my CardLayout
55 f.add(p1, "First");
56 f.add(p2, "Second");
57 f.add(p3, "Third");
58 f.add(p4, "Fourth");
59 f.add(p5, "Fifth");
60
61 // Display the first panel.
62 myCard.show(f, "First");
63
64 f.setSize(200,200);
65 f.setVisible(true);
66 }
67

10

Building Java GUIs 10-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

CardLayout Manager (Continued)

68 public void mousePressed(MouseEvent e) {
69 myCard.next(f);
70 }
71
72 public void mouseReleased(MouseEvent e) { }
73 public void mouseClicked(MouseEvent e) { }
74 public void mouseEntered(MouseEvent e) { }
75 public void mouseExited(MouseEvent e) { }
76
77 public static void main (String args[]) {
78 CardExample ct = new CardExample();
79 ct.launchFrame();
80 }
81 }

This code creates the following:

Figure 10-9 Example of CardLayout

10

10-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

GridBagLayout Manager

In addition to the FlowLayout , BorderLayout , GridLayout , and
CardLayout managers, the core java.awt also provides
GridBagLayout manager.

The GridBagLayout manager provides complex layout facilities based
on a grid, but allows single components to take their preferred sizes
within a cell rather than fill the whole cell. The GridBagLayout
manager also allows a single component to extend over more than one
cell.

✓ GridBagLayout is complex to understand and manipulate. The GridBagLayout example from
the API is covered in Appendix D, ‘‘Using the GridBagLayout." If you want to cover it as a
module, you should do so now.

10

Building Java GUIs 10-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Panels and Complex Layouts

The following program uses a Panel to allow two buttons to be placed
in the NORTHregion of a border layout. This kind of nesting is
fundamental to complex layouts. The Panel is treated just like another
component as far as the Frame is concerned.

1 import java.awt.*;
2
3 public class ComplexLayoutExample {
4 private Frame f;
5 private Panel p;
6 private Button bw, bc;
7 private Button bfile, bhelp;
8
9 public ComplexLayoutExample() {
10 f = new Frame("GUI example 3");
11 bw = new Button("West");
12 bc = new Button("Work space region");
13 bfile = new Button("File");
14 bhelp = new Button("Help");
15 }
16
17 public void launchFrame() {
18 // Add bw and bc buttons in the frame border
19 f.add(bw, BorderLayout.WEST);
20 f.add(bc, BorderLayout.CENTER);
21 // Create panel for the buttons in the north border
22 p = new Panel();
23 p.add(bfile);
24 p.add(bhelp);
25 f.add(p, BorderLayout.NORTH);
26 // Pack the frame and make it visible
27 f.pack();
28 f.setVisible(true);
29 }
30
31 public static void main(String args[]) {
32 ComplexLayoutExample gui = new ComplexLayoutExample();
33 gui.launchFrame();
34 }
35 }

10

10-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating Panels and Complex Layouts

When the example is run, the resulting display looks like the
following:

Figure 10-10 Combining Layout Managers

If the window is resized, it looks like the following:

Figure 10-11 Resized Combination Layouts

The NORTHregion of the BorderLayout is now holding two buttons. In
fact, it holds only the single Panel but that panel contains the two
buttons.

The size and position of the Panel is determined by the
BorderLayout manager, and the preferred size of a Panel is
determined from the preferred size of the components in that Panel .
The size and position of the buttons in the Panel are controlled by the
FlowLayout that is associated with the Panel by default.

10

Building Java GUIs 10-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Drawing in AWT

Every AWT component has a paint method that draws the specified
component. It is possible for you to draw directly to the screen using
the Graphics object of a given component. Usually, you would create
a subclass of Panel that would override the paint method.

The paint method is called every time the panel needs to be redrawn.
The circumstances of when paint is called is determined by the AWT
thread. For example, paint is called when the panel is first visible,
when an overlapping window is removed, and when the panel is part
of a frame that has been minimized and then restored. The
programmer can also force AWT to repaint the panel by calling the
repaint method.

10

10-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Drawing in AWT

The paint method takes a single parameter: a Graphics object. The
Graphics class includes many methods for drawing various shapes:
arcs, ovals (circles), polygons, rectangles, rounded edge rectangles, 3D
rectangles, lines, polylines, and strings. The first six of these shapes
can be filled with a color.

Figure 10-12 shows a panel with the various shapes drawn on it with
the names of the draw method underneath the image.

Figure 10-12 Various Shapes Drawn by the Graphics Object

10

Building Java GUIs 10-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Building Java GUIs

Exercise objective – In this lab you will develop two graphical user
interfaces.

Preparation

To successfully complete this lab, you must understand the purpose of
a graphical user interface and know how to create one using layout
managers.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod10). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Create the ChatClient GUI (Level 1 Lab)

In this exercise you will create a GUI for a "chat room" application.
You will use a complex layout to properly position several GUI
components in a frame.

Exercise 2: Create the Calculator GUI (Level 2 Lab)

In this exercise you will create a GUI for a "calculator" application. You
will use a gird layout to position the digit and operator buttons in a
frame.

10

10-42 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Building Java GUIs

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

10

Building Java GUIs 10-43
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you
can:

❑ Describe the AWT package and its components

❑ Define the terms containers, components, and layout managers, and
describe how they work together to build a GUI

❑ Use layout managers

❑ Use the FlowLayout , BorderLayout , GridLayout , and
CardLayout managers to achieve a desired dynamic layout

❑ Add components to a container

❑ Use the Frame and Panel containers appropriately

❑ Describe how complex layouts with nested containers work

❑ In a Java program, identify the following:

▼ Containers

▼ The associated layout managers

▼ The layout hierarchy of all components

10

10-44 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

You now know how to display a GUI on the computer screen. What do
you need to make the GUI useful?

11-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUIEventHandling 11

Objectives

Upon completion of this module, you should be able to:

● Define events and event handling

● Write code to handle events that occur in a GUI

● Describe the concept of adapter classes, including how and when
to use them

● Determine the user action that originated the event from the event
object details

● Identify the appropriate interface for a variety of event types

● Create the appropriate event handler methods for a variety of
event types

● Understand the use of inner classes and anonymous classes in
event handling

This module covers the event-based GUI user input mechanism.

11

11-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● What parts of a GUI are required to make it useful?

● How does a graphical program handle a mouse click or any other
type of user interaction?

✓ Part of a GUI is receiving interactive user input. This input can be used, for example, to fill
out a text form on the screen, register a mouse click on a map, or shut down a program.
This module describes the event-driven mechanism provided by the AWT for receiving
interactive user input.

11

GUI Event Handling 11-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is an Event?

When the user performs an action at the user interface level (clicks a
mouse or presses a key), this causes an event to be issued. Events are
objects that describe what has happened. A number of different types
of event classes exist to describe different categories of user action.

11

11-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is an Event?

Event Sources

An event source is the generator of an event. For example, a mouse click
on a Button component generates an ActionEvent with the button as
the source. The ActionEvent instance is an object that contains
information about the events that just took place. It contains:

● getActionCommand() – Returns the command name associated
with the action

● getModifiers() – Returns any modifiers held during the action

Event Handlers

An event handler is a method that receives an event object, deciphers it,
and processes the user’s interaction.

11

GUI Event Handling 11-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java 2 SDK Event Model

Delegation Model

The delegation event model came into existence with JDK 1.1. With
this model, events are sent to the component from which the event
originated, but it is up to each component to propagate the event to
one or more registered classes called listeners. Listeners contain event
handlers that receive and process the event. In this way, the event
handler can be in an object separate from the component. Listeners are
classes that implement the EventListener interface.

Note – The event model of JDK 1.0 is a "hierarchy model." This model
has been "out of favor" for many years and we will not discuss it here.
For information about this event model, see Appendix B, "JDK 1.0 GUI
Event Model." Do not use the old model and the new model together.

Figure 11-1 Delegation Event Model

Events are objects that are reported only to registered listeners. Every
event has a corresponding listener interface that mandates which
methods must be defined in a class suited to receiving that type of
event. The class that implements the interface defines those methods,
and can be registered as a listener.

Events from components that have no registered listeners are not
propagated.

Frame

Panel

Button

user clicks on button

another event handler

one event handler

actionPerformed(ActionEvent e) {
 ...
}

actionPerformed(ActionEvent e) {
 ...
}ActionEvent

11

11-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java 2 SDK Event Model

Delegation Model (Continued)

For example, the following is the code for a simple Frame with a single
Button on it:

1 import java.awt.*;
2
3 public class TestButton {
4 private Frame f;
5 private Button b;
6
7 public TestButton() {
8 Frame f = new Frame("Test");
9 Button b = new Button("Press Me!");
10 b.setActionCommand("ButtonPressed");
11 }
12
13 public void launchFrame() {
14 b.addActionListener(new ButtonHandler());
15 f.add(b,BorderLayout.CENTER);
16 f.pack();
17 f.setVisible(true);
18 }
19
20 public static void main(String args[]) {
21 TestButton guiApp = new TestButton();
22 guiApp.launchFrame();
23 }
24 }

The ButtonHandler class is the handler class to which the event is
delegated.

1 import java.awt.event.*;
2
3 public class ButtonHandler implements ActionListener {
4 public void actionPerformed(ActionEvent e) {
5 System.out.println("Action occurred");
6 System.out.println("Button’s command is: "
7 + e.getActionCommand());
8 }
9 }

11

GUI Event Handling 11-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java 2 SDK Event Model

Delegation Model (Continued)

This example has the following characteristics:

● The Button class has an addActionListener(ActionListener)
method.

● The ActionListener interface defines a single method,
actionPerformed, which receives an ActionEvent.

● When a Button object is created, it can have an object registered as
a listener for ActionEvents through the
addActionListener() method. The registered listener is
instantiated from a class that implements the ActionListener
interface.

● When the Button object is clicked on with the mouse, an
ActionEvent is sent. The ActionEvent is received through the
actionPerformed() method of any ActionListener that is
registered on the button through its addActionListener()
method.

● The method getActionCommand() of the ActionEvent class
returns the command name associated with this action. On line 10,
we set the action command for this button to be "ButtonPressed."

11

11-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Java 2 SDK Event Model

Delegation Model (Continued)

● Events are not accidentally handled. The objects that wish to listen
to particular events on a particular GUI component register
themselves with that component.

● When an event occurs only the objects that were registered
received a message that the event occurred.

● The delegation model is good for the distribution of work among
classes.

Events do not have to be related to AWT components. This event
model provides support for JavaBeans.

11

GUI Event Handling 11-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Event Categories

The general mechanism for receiving events from components has
been described in the context of a single type of event. Many of the
event classes reside in the java.awt.event package, but others exist
elsewhere in the API.

For each category of events, there is an interface that has to be
implemented by the class of objects that wants to receive the events.
That interface demands that one or more methods be defined as well.
Those methods are called when particular events arise. Table 11-1 lists
the categories, giving the interface name for each category and the
methods demanded. The method names are mnemonic, indicating the
source or conditions that cause the method to be called.

11

11-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Event Categories (Continued)

Table 11-1 Method Categories and Interfaces

Category Interface Name Methods

Action ActionListener actionPerformed(ActionEvent)

Item ItemListener itemStateChanged(ItemEvent)

Mouse MouseListener mousePressed(MouseEvent)
mouseReleased(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mouseClicked(MouseEvent)

Mouse
Motion

MouseMotionListener mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

Key KeyListener keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

Focus FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

Adjustment AdjustmentListener adjustmentValueChanged
 (AdjustmentEvent)

Component ComponentListener componentMoved(ComponentEvent)
componentHidden(ComponentEvent)
componentResized(ComponentEvent)
componentShown(ComponentEvent)

11

GUI Event Handling 11-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Event Categories (Continued)

Table 11-1 Method Categories and Interfaces

Category Interface Name Methods

Window WindowListener windowClosing(WindowEvent)
windowOpened(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)

Container ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

Text TextListener textValueChanged(TextEvent)

11

11-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Complex Example

This section examines a more complex Java code software example. It
tracks the movement of the mouse when the mouse button is pressed
(mouse dragging). It also detects mouse movement even when the
buttons are not pressed (mouse moving).

The events caused by moving the mouse with or without a button
pressed can be picked up by objects of a class that implements the
MouseMotionListener interface. This interface requires two
methods, mouseDragged() and mouseMoved() . Even if you are
interested only in the drag movement, you must provide both
methods. However, the body of the mouseMoved() method can be
empty.

To pick up other mouse events, including mouse clicking, you must
implement the MouseListener interface. This interface includes
several events including mouseEntered , mouseExited ,
mousePressed , mouseReleased , and mouseClicked .

When mouse or keyboard events occur, information about the position
of the mouse and the key that was pressed is available in the event
that it generated. In the first example on event handling, there was a
separate class named ButtonHandler that handled events. In the
following example, events are handled within the class named
TwoListener .

11

GUI Event Handling 11-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Complex Example (Continued)

The following example shows the code for the TwoListener class:

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class TwoListener
5 implements MouseMotionListener,
6 MouseListener {
7 private Frame f;
8 private TextField tf;
9
10 public TwoListener() {
11 f = new Frame("Two listeners example");
12 tf = new TextField(30);
13 }
14
15 public void launchFrame() {
16 Label label = new Label("Click and drag the mouse");
17 // Add components to the frame
18 f.add(label, BorderLayout.NORTH);
19 f.add(tf, BorderLayout.SOUTH);
20 // Add this object as a listener
21 f.addMouseMotionListener(this);
22 f.addMouseListener(this);
23 // Size the frame and make it visible
24 f.setSize(300, 200);
25 f.setVisible(true);
26 }
27
28 // These are MouseMotionListener events
29 public void mouseDragged(MouseEvent e) {
30 String s = "Mouse dragging: X = " + e.getX()
31 + " Y = " + e.getY();
32 tf.setText(s);
33 }
34
35 public void mouseEntered(MouseEvent e) {
36 String s = "The mouse entered";
37 tf.setText(s);
38 }

11

11-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Complex Example (Continued)

39
40 public void mouseExited(MouseEvent e) {
41 String s = "The mouse has left the building";
42 tf.setText(s);
43 }
44
45 // Unused MouseMotionListener method.
46 // All methods of a listener must be present in the
47 // class even if they are not used.
48 public void mouseMoved(MouseEvent e) { }
49
50 // Unused MouseListener methods.
51 public void mousePressed(MouseEvent e) { }
52 public void mouseClicked(MouseEvent e) { }
53 public void mouseReleased(MouseEvent e) { }
54
55 public static void main(String args[]) {
56 TwoListener two = new TwoListener();
57 two.launchFrame();
58 }
59 }

A number of points in this example are discussed in the following
sections.

Implementing Multiple Interfaces

The class is declared in lines 5 and 6 using the following:

implements MouseMotionListener,
MouseListener

You can declare multiple interfaces by using comma separation.

11

GUI Event Handling 11-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Complex Example (Continued)

Listening to Multiple Sources

If you issue the following method calls in lines 21 and 22:

f.addMouseListener(this);
f.addMouseMotionListener(this);

both types of events cause methods to be called in the TwoListener
class. An object can “listen” to as many event sources as required; its
class need only implement the required interfaces.

Obtaining Details About the Event

The event arguments with which handler methods, such as
mouseDragged() , are called contain potentially important
information about the original event. To determine the details of what
information is available for each category of event, check the
appropriate class documentation in the java.awt.event package.

11

11-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Multiple Listeners

The AWT event listening framework allows multiple listeners to be
attached to the same component. In general, if you want to write a
program that performs multiple actions based on a single event, code
that behavior into your handler method. However, sometimes a
program’s design requires multiple unrelated parts of the same
program to react to the same event. This might happen if, for example,
a context-sensitive help system is being added to an existing program.

The listener mechanism allows you to call an addXxxListener()
method as many times as is needed, and you can specify as many
different listeners as your design requires. All registered listeners have
their handler methods called when the event occurs.

11

GUI Event Handling 11-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI Behavior

Multiple Listeners (Continued)

Note – The order in which the handler methods are called is
undefined. Generally, if the order of invocation matters then the
handlers are not unrelated. In this case, register only the first listener
and have that one call the others directly.

✓ This is called an event multiplexer.

11

11-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Event Adapters

It is a lot of work to implement all of the methods in each of the
listener interfaces, particularly the MouseListener interface and
WindowListener interface.

For example, the MouseListener interface declares the following
methods:

● public void mouseClicked(MouseEvent event)

● public void mouseEntered(MouseEvent event)

● public void mouseExited(MouseEvent event)

● public void mousePressed(MouseEvent event)

● public void mouseReleased(MouseEvent event)

11

GUI Event Handling 11-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Event Adapters

As a convenience, the Java programming language provides adapter
classes that implement each interface containing more than one
method. The methods in these adapter classes are empty.

You can extend an adapter class and override only those methods that
you need. For example:

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class MouseClickHandler extends MouseAdapter {
5
6 // We just need the mouseClick handler, so we use
7 // an adapter to avoid having to write all the
8 // event handler methods
9
10 public void mouseClicked(MouseEvent e) {
11 // Do stuff with the mouse click...
12 }
13 }

Note – This is a class, not an interface. This means you can extend only
one other class. Because listeners are interfaces, you can implement
multiple ones.

Note – Be careful when overriding methods. Remember that a
declaration, such as public void MouseClicked(MouseEvent e) is
legal, and really a new method, not an overriding one because
mouseClicked is misspelled. Such errors are hard to catch if the event
handler produces no external effect.

11

11-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Event Handling Using Inner Classes

You can implement event handlers as inner class (see lines 19 and
26-32). This allows access to the private data of the outer class (line 30).
For example:

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class TestInner {
5 private Frame f;
6 private TextField tf;
7
8 public TestInner() {
9 f = new Frame("Inner classes example");
10 tf = new TextField(30);
11 }
12
13 public void launchFrame() {
14 Label label = new Label("Click and drag the mouse");
15 // Add components to the frame
16 f.add(label, BorderLayout.NORTH);
17 f.add(tf, BorderLayout.SOUTH);
18 // Add a listener that uses an Inner class
19 f.addMouseMotionListener(new MyMouseMotionListener());
20 f.addMouseListener(new MouseClickHandler());
21 // Size the frame and make it visible
22 f.setSize(300, 200);
23 f.setVisible(true);
24 }
25
26 class MyMouseMotionListener extends MouseMotionAdapter {
27 public void mouseDragged(MouseEvent e) {
28 String s = "Mouse dragging: X = "+ e.getX()
29 + " Y = " + e.getY();
30 tf.setText(s);
31 }
32 }
33
34 public static void main(String args[]) {
35 TestInner obj = new TestInner();
36 obj.launchFrame();
37 }
38 }

11

GUI Event Handling 11-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Event Handling Using Anonymous Classes
You can include an entire class definition within the scope of an
expression. This approach defines what is called an anonymous inner
class and creates the instance all at once. Anonymous inner classes are
generally used in conjunction with AWT event handling. For example:

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class TestAnonymous {
5 private Frame f;
6 private TextField tf;
7
8 public TestAnonymous() {
9 f = new Frame("Anonymous classes example");
10 tf = new TextField(30);
11 }
12
13 public void launchFrame() {
14 Label label = new Label("Click and drag the mouse");
15 // Add components to the frame
16 f.add(label, BorderLayout.NORTH);
17 f.add(tf, BorderLayout.SOUTH);
18 // Add a listener that uses an anonymous class
19 f.addMouseMotionListener(new MouseMotionAdapter() {
20 public void mouseDragged(MouseEvent e) {
21 String s = "Mouse dragging: X = "+ e.getX()
22 + " Y = " + e.getY();
23 tf.setText(s);
24 }
25 }); // <- note the closing parenthesis
26 f.addMouseListener(new MouseClickHandler());
27 // Size the frame and make it visible
28 f.setSize(300, 200);
29 f.setVisible(true);
30 }
31
32 public static void main(String args[]) {
33 TestAnonymous obj = new TestAnonymous();
34 obj.launchFrame();
35 }
36 }

Note – The compilation of an anonymous class generates a file, such as
TestAnonymous$1.class .

11

11-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With Events

Exercise objective – You will write, compile, and run the revised
ChatClient GUI and Calculator GUI codes to include event handlers.

Preparation

In order to successfully complete this lab, you must have a clear
understanding of how the event model works.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod11). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Create a ChatClient GUI, Part II (Level 1)

In this exercise, you will implement the basic event handlers for the
"chat room" GUI.

Exercise 2: Create a Calculator GUI, Part II (Level 3)

In this exercise, you will implement the basic event handlers for the
"calculator" GUI.

11

GUI Event Handling 11-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With Events

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

11

11-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you
can:

❑ Define events and event handling

❑ Write code to handle events that occur in a GUI

❑ Describe the concept of adapter classes, including how and when
to use them

❑ Determine the user action that originated the event from the event
object details

❑ Identify the appropriate interface for a variety of event types

❑ Create the appropriate event handler methods for a variety of
event types

❑ Understand the use of inner classes and anonymous classes in
event handling

11

GUI Event Handling 11-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

You now know how to set up a Java GUI for both graphic output and
interactive user input. However, only a few of the components from
which GUIs can be built have been described. What other components
would be useful in a GUI?

12-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Introduction to JavaApplets 12

Objectives

Upon completion of this module, you should be able to:

● Differentiate between a standalone application and an applet

● Write an HTML tag to call a Java applet

● Describe the class hierarchy of the applet and AWT classes

● Create the HelloWorld.java applet

● List the major methods of an applet

● Describe and use the painting model of AWT

● Use applet methods to read images and files from URLs

● Handle various mouse events within the applet

● Pass parameters to an applet from an HTML file using the
<param> tag

This module discusses the support for applets by the Java 2 SDK, and
describes how applets differ from applications in terms of program
form, operating context, and how they are started.

12

12-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answer to
this question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● What advantages do applets provide over standalone
applications?

✓ It is clear from the Java platform’s graphics and network security features that the Web is
a significant niche for Java programs. Until now, only standalone Java software programs
have been discussed. This module discusses what you need to know to run Java software
programs using a Web browser, allowing access over the Web.

✓ There are significant differences between application and applet operating contexts; this
module discusses the differences between the contexts, and shows how to code applets
to operate in their context.

✓ Applets interact with their environment differently than applications. This module
discusses how applets are started, and describes enough HTML to start an applet from a
Web page.

✓ The "hooks" or places (that is, methods) by which the environment runs an applet differ
from those for applications (which have a "main" method). This module explores these
"hook" methods, and when and how they are called by their environment. Additionally, the
Component paint mechanism that updates the screen when its content is changed or
otherwise needs to be redisplayed is described.

12

Introduction to Java Applets 12-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is an Applet?

An applet is a Java class that you can embed in an HTML page, and is
downloaded and executed by a Web browser. It is a specific type of
Java technology container. It differs from an application in the way it is
executed. An application is started when its main method is called.
The lifecycle of an applet is more complex. This module examines how
to run an applet, how to load an applet into the browser, and how to
write an applet.

Loading an Applet

An applet runs in the environment of a Web browser, so it is not
started directly by typing a command. You must create an HTML file
that tells the browser what to load and how to run it. You then “point”
the browser at the URL that specifies that HTML file. (The format of
the HTML file is discussed later in this module.)

12

12-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is an Applet?

Loading an Applet (Continued)

Figure 12-1 illustrates the steps involved in running an applet.

Figure 12-1 Running an Applet

Applet Classes

http://someLocation/file.html

1. Browser loads URL.

Loading...

Location:

2. Browser loads HTML document.

<HTML>

<APPLET CODE = ...>

</APPLET>

:

http://someLocation/file.html

3. Browser loads applet classes.

Browser

4. Browser runs applet.

HTML file:

12

Introduction to Java Applets 12-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is an Applet?

Applet Security Restrictions

Applets are pieces of code that represent an inherently dangerous
prospect because they are loaded over a network. What if someone
writes a malicious class that reads your personal files and sends them
over the Internet?

The depth to which security is controlled is implemented at the
browser level. Most browsers (including Netscape Navigator) prevent
the following by default:

● Runtime execution of another program

● File I/O

● Calls to any native methods

● Attempts to open a socket to any system except the host that
provided the applet

12

12-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is an Applet?

Applet Security Restrictions (Continued)

These restrictions prevent an applet from violating the privacy of, or
damaging a remote system, by restricting the applet's access to the files
of that system. Preventing the execution of another program and
disallowing calls to native methods restrict the applet from starting
code that runs unchecked by the JVM. The restriction on sockets
prevents communication with another program, which is stored on a
non-trusted host.

Java 2 SDK provides a means of specifying a particular "protection
domain," or security environment, in which a particular applet is to be
run. A remote system checks the originating URL and signature of the
applet it downloads against a local file containing entries mapping
special applets to special protection domains. This enables special
applets coming from particular places to run with special privileges.

12

Introduction to Java Applets 12-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Writing an Applet

To write an applet, you must create a class using the following form:

import java.applet.*;

public class HelloWorld extends Applet {

The applet’s class must be public and its name must match the name
of the file it is in; in this case, HelloWorld.java . The class must be a
subclass of the class java.applet.Applet .

Applet Class Hierarchy

The java.applet.Applet class is actually a subclass of
java.awt.Panel . The hierarchy of the applet and AWT classes is as
follows:

Figure 12-2 Applet and AWT Class Hierarchies

This hierarchy shows that you can use an applet directly as the
starting point for an AWT layout. Because an applet is a Panel , it has
a FlowLayout manager by default. The methods of the Component ,
Container , and Panel classes are inherited by the Applet class.

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Panel

java.awt.Frame java.applet.Applet

java.awt.Window

12

12-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Writing an Applet

Key Applet Methods

In an application, the program is entered when the main method is
called. However, in an applet, this is not the case. After the constructor
completes its task, the browser calls init to perform basic
initialization of the applet. After init completes its task, the browser
calls the method start . start is described more closely later in this
module; however, in general, it is called when the applet becomes
visible.

Both the init and start methods run to completion before the
applet becomes “live,” and because of this they cannot be used to
program ongoing behavior into an applet. In fact, unlike the main
method in a simple application, there is no method that is executed
continuously throughout the “life” of the applet. You will see later
how to do this using threads. Additional methods you write for your
applet subclass can include stop , destroy, and paint .

12

Introduction to Java Applets 12-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Applet Methods and the Applet Life Cycle

The applet lifecycle is more complex than what has been discussed so
far. There are three major methods that relate to its lifecycle: init ,
start , and stop .

init

This member function is called at the time the applet is created and
loaded into a browser capable of supporting Java technology (such as
the appletviewer). The applet can use this method to initialize data
values. The init method runs to completion before start is called.

public void init() {
 // set up GUI
}

12

12-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Applet Methods and the Applet Life Cycle

start

Once the init method is completed, the start method executes,
which causes the applet to become “live.” It also runs whenever the
applet becomes visible, such as when the browser is restored after
being iconized or when the browser returns to the page containing the
applet after moving to another URL. This method is typically used to
start threads or an animation or to play sounds.

public void start() {
musicClip.play();

}

stop

The stop method is called when the applet becomes invisible. This
happens when the browser is iconified or it follows a link to another
URL. The applet uses this method to stop any functionality that
should not occupy the CPU when the applet is not on the current
browser page.

public void stop() {
 musicClip.stop();
}

The start and stop methods effectively form a pair. Typically start
activates a behavior in an applet and stop deactivates the behavior.

12

Introduction to Java Applets 12-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Applet Display

Applets are essentially graphical in nature, so although you can issue
System.out.println() calls, you do not normally do so. Instead,
you create your display in a graphical environment.

You can draw on an applet’s panel by creating a paint method. The
browser environment calls the paint method whenever the applet’s
display needs refreshing. For example, when the browser window is
displayed after being minimized or iconified.

Write your paint method so that it works properly whenever it is
called. Exposure happens asynchronously and is driven by the
environment, not the program.

✓ The paint method is not limited to use in applets. The Canvas and Frame classes use paint
as well.

12

12-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Applet Display

The paint Method and the Graphics Object

The paint method takes an argument that is an instance of the
java.awt.Graphics class. The argument is always the graphics
context of the panel that makes up the applet (remember, Applet is a
subclass of Panel). You can use this context to draw or write into your
applet. The following is an example of an applet that uses a paint
method to write text:

1 import java.awt.*;
2 import java.applet.*;
3
4 public class HelloWorld extends Applet {
5 private int paintCount;
6 public void init() {
7 paintCount = 0;
8 }
9 public void paint(Graphics g){
10 g.drawString("Hello World", 25, 25);
11 ++paintCount;
12 g.drawString("Number of times paint called: "
13 + paintCount, 25, 50);
14 }
15 }

Note – The numeric arguments to the drawString method are the x
and y pixel coordinates for the start of the text. (0,0) represents the
upper left corner. These coordinates refer to the baseline of the font, so
writing at y coordinate zero results in the bulk of your text being off
the top of the display, only the descenders, such as the tail of the letter
p are visible.

12

Introduction to Java Applets 12-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Painting

In addition to the basic lifecycle methods, an applet has important
methods related to its display. These methods are declared and
documented for the AWT Component class. You must adhere to the
correct model for display handling using the AWT.

Update the display using a separate thread that is referred to as the
AWT thread. This thread can be called upon to handle two situations
that relate to updating the display.

The first of these conditions is exposure; either when the display is
first exposed, or where part of the display has been damaged and
must be replaced. Display damage can occur at any time, and your
program must be able to update the display at any time.

The second condition is when the program redraws the display with
new contents. This redrawing might require that you first remove the
old image.

12

12-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Painting

The paint Method

Exposure handling occurs automatically and results in a call to the
paint method. A facility of the Graphics class, called a clip rectangle,
is used to optimize the paint method so that updates are not made
over the entire area of the graphics unless necessary. Rather, these
updates are restricted to the region that has been damaged. Override
the paint method to control what is painted on your applet.

public void paint(Graphics g) {...}

The repaint Method

A call to the repaint method notifies the system that you want to
change the display.

The update Method

The repaint method actually causes the AWT thread to call another
method, update . The update method usually clears the current
display and calls paint . You can modify the update method, for
example, to reduce flicker by calling paint without clearing the
display.

12

Introduction to Java Applets 12-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Painting

Method Interaction

Figure 12-3 shows how the paint , update , and repaint methods are
related.

Figure 12-3 Method Relationships

AWT thread (waiting)

update() – clear
area and then
call paint()

paint()

repaint()

Exposure

12

12-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Painting

Applet Display Strategies

The applet model requires that you adopt a specific strategy for
maintaining your display. You must do the following:

● Maintain a model of the display. This model defines how to re-
render the display. Instructions on how to do this are embodied in
the paint method.

● Have the paint method render the display based only on the
contents of the model. This allows paint to regenerate the display
consistently whenever it is called, and handle exposure correctly.

12

Introduction to Java Applets 12-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Painting

Applet Display Strategies (Continued)

● Have the program change the display by updating the model and
then calling the repaint method so that the update method (and
ultimately the paint method) gets called by the AWT thread.

Note – A single AWT thread handles all component painting and the
distribution of input events. Keep paint and update methods simple
to avoid stalling the AWT thread. In extreme cases, you will need the
help of other threads to achieve this. Thread programming is the
subject of Module 14, "Threads."

12

12-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

An Example Paint Model

Suppose you want to display the string “Hello World! ” in the applet
panel wherever the user clicks. A simple implementation of this
requirement would be to paint the string “Hello World! ” every time
the user clicks the mouse in the applet panel. This can be
accomplished by keeping track of the click point through the
lastClick data attribute. For example:

1 // <APPLET CODE="PaintModel1.class" WIDTH=200 HEIGHT=200></APPLET>
2
3 import java.applet.*;
4 import java.awt.event.*;
5 import java.awt.*;
6
7 public class PaintModel1 extends Applet {
8 // The paint model: the last click Point
9 private Point lastClick = null;
10
11 public void init() {
12 addMouseListener(new MyModelRecorder());
13 }
14
15 public void paint(Graphics g) {
16 if (lastClick != null) {
17 g.drawString("Hello World!", lastClick.x, lastClick.y);
18 }
19 }
20
21 private class MyModelRecorder extends MouseAdapter {
22 public void mousePressed(MouseEvent e) {
23 lastClick = e.getPoint();
24 repaint();
25 }
26 }
27 }

Unfortunately, the AWT thread repaints the applet using the update
method which clears the screen before calling our paint method.

✓ There are three implementations of PaintModel that demonstrate how to build a
reasonable paint model and how repaint /update /paint work together. This first model
assumes that paint will be called without the screen being cleared by update .

12

Introduction to Java Applets 12-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

An Example Paint Model

A possible solution to the update problem is to override the update
method to not clear the screen before calling paint .

1 // <APPLET CODE="PaintModel2.class" WIDTH=200 HEIGHT=200></APPLET>
2
3 import java.applet.*;
4 import java.awt.event.*;
5 import java.awt.*;
6
7 public class PaintModel2 extends Applet {
8 // The paint model: the last click Point
9 private Point lastClick = null;
10
11 public void init() {
12 addMouseListener(new MyModelRecorder());
13 }
14
15 public void update(Graphics g) {
16 paint(g);
17 }
18
19 public void paint(Graphics g) {
20 if (lastClick != null) {
21 g.drawString("Hello World!", lastClick.x, lastClick.y);
22 }
23 }
24
25 private class MyModelRecorder extends MouseAdapter {
26 public void mousePressed(MouseEvent e) {
27 lastClick = e.getPoint();
28 repaint();
29 }
30 }
31 }

Unfortunately, if the applet is obscured and then exposed, the pixels
that were lost are not redrawn (except for the last point).

✓ For this model, you want to demonstrate that the user can click several times and “ Hello
World! ” appears at each location (as desired). However, ask the students what would
happen if a window were to cover up and then expose some of the applet? The pixels are
lost (except that the last point is redrawn).

12

12-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

An Example Paint Model

Our last model uses a list of Point objects to keep track of every user
click location. The mouse pressed event handler adds each click point
to the mouseClicks list and the paint method draws “Hello World! ”
at each click point by iterating over the list.

1 // <APPLET CODE="PaintModel3.class" WIDTH=200 HEIGHT=200></APPLET>
2
3 import java.applet.*;
4 import java.awt.event.*;
5 import java.awt.*;
6 import java.util.List;
7 import java.util.ArrayList;
8
9 public class PaintModel3 extends Applet {
10 // The paint model: a list of click Points
11 private List mouseClicks = new ArrayList(5);
12
13 public void init() {
14 addMouseListener(new MyModelRecorder());
15 }
16
17 public void update(Graphics g) {
18 paint(g);
19 }
20
21 public void paint(Graphics g) {
22 for(int x = 0; x < mouseClicks.size(); x++) {
23 Point p = (Point) mouseClicks.get(x);
24 g.drawString("Hello World!", p.x, p.y);
25 }
26 }
27
28 private class MyModelRecorder extends MouseAdapter {
29 public void mousePressed(MouseEvent e) {
30 mouseClicks.add(e.getPoint());
31 repaint();
32 }
33 }
34 }

Note – While it is not imperative to override the update method, we
have done so to reduce screen flicker.

12

Introduction to Java Applets 12-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

What Is the appletviewer ?

An applet is usually run inside a web browser, such as HotJava™ or
the Netscape Navigator, which is capable of running Java software
programs. To simplify and speed up development, the Java 2 SDK
comes with a tool designed only to view applets, not HTML pages.
This tool is the appletviewer .

The appletviewer is a Java application that enables you to run
applets without using a Web browser. It resembles a minimum browser.

The appletviewer reads the HTML file specified by the URL on the
command line. This file must contain the instructions for loading and
running one or more applets. The appletviewer ignores all other
HTML code. It does not display normal HTML or embedded applets
in a text page.

✓ Explain that the appletviewer has a subset of the functionality of a browser and is
designed so that applets created now will work with minimal changes later.

12

12-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Starting Applets With the appletviewer

The appletviewer posts a frame-like space onto the screen,
instantiates an instance of the applet, and posts that applet instance to
the Frame.

The appletviewer takes, as a command-line argument, a URL to an
HTML file containing an applet reference. This applet reference is an
HTML tag that specifies the code that the appletviewer loads; for
example:

<applet code=HelloWorld.class width=100 height=100>
</applet>

✓ There can be other tags between applet and /applet ; these are covered later.

The general format of this tag is the same as any other HTML, using
the < and > symbols to delimit the instructions. All the parts shown
here are required. You must have both <applet ...> and
</applet> . The <applet ...> part specifies a code entry and a
width and height.

Note – You should treat applets as being of fixed size and use the size
specified in the <applet > tag.

12

Introduction to Java Applets 12-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Starting Applets With the appletviewer

Synopsis

The appletviewer takes a URL to an HTML file containing the
<applet > tag as a command-line argument.

appletviewer [-debug] URLs ...

The only valid option to the appletviewer is the -debug flag which
starts the applet in the Java debugger, jdb . Compile your Java code
with the -g option to see the source code in the debugger.

Example

The following appletviewer command starts the appletviewer :

appletviewer HelloWorld.html

This creates and displays the small windows in Figure 12-4.

Figure 12-4 HelloWorld Applets

12

12-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The applet Tag

Syntax

The complete syntax for the applet tag is:

<applet
[archive= archiveList]
code= appletFile.class
width= pixels height= pixels
[codebase= codebaseURL]
[alt= alternateText]
[name= appletInstanceName]
[align= alignment]
[vspace= pixels] [hspace= pixels]

>
[<param name= appletAttribute1 value= value>]
[<param name= appletAttribute2 value= value>]
 . . .
[alternateHTML]
</applet>

where

● archive = archiveList – This optional attribute describes one or
more archives containing classes and other resources that are
“preloaded.” The classes are loaded using an instance of an
AppletClassLoader with the given codebase . The archives in
archiveList are separated by a comma (,).

● code = appletFile.class – This required attribute gives the name of
the file that contains the compiled Applet subclass. This can also
be in the format package.appletFile.class.

Note – This file is relative to the base URL of the HTML file from
which you are loading. It cannot include a path name. To change the
base URL of the applet, use the <codebase> tag.

● width = pixels height = pixels – These required attributes give the
initial width and height (in pixels) of the applet display area, not
including any Windows or Dialog s that the applet displays.

12

Introduction to Java Applets 12-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The applet Tag

Description

● codebase = codebaseURL – This optional attribute specifies the
base URL of the applet—the directory that contains the applet's
code. If this attribute is not specified, then the document's URL is
used.

● alt = alternateText – This optional attribute specifies which text to
display if the browser can read the applet tag but cannot run Java
applets.

● name = appletInstanceName – This optional attribute specifies a
name for the applet instance, which makes it possible for applets
on the same page to find (and communicate with) each other.

● align = alignment – This optional attribute specifies the
alignment of the applet. The possible values of this attribute are
the same as those for the IMG tag in basic HTML: left , right ,
top , texttop , middle , absmiddle , baseline , bottom , and
absbottom .

● vspace = pixels hspace = pixels – These optional attributes
specify the number of pixels above and below the applet (vspace)
and on each side of the applet (hspace). They are treated the same
way as the IMG tag's vspace and hspace attributes.

● <param name = appletAttribute1 value = value> – This tag
provides an applet with a value specified “from the outside,"
serving the same functional purpose as command-line arguments
serve a Java application. Applets access their attributes with the
getParameter method, which is covered in more detail later in
this module.

● Browsers that are not capable of running Java programs display
any regular HTML included between your <applet> and
</applet> tags; browsers capable of supporting Java technology
ignore the HTML code between these two tags.

12

12-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Additional Applet Features

A number of additional features are available in an applet.

All Java software programs have access to network features using the
classes in the java.net package that is examined in Module 15.
Applets additionally have methods that allow them to determine
information about the browser environment in which they have been
launched.

The class java.net.URL describes URLs and can be used to connect to
them. Two methods in the Applet class determine the value of
significant URLs:

● getDocumentBase returns a URL object that describes the
directory of the current browser page (where the HTML file with
applet tags resides).

● getCodeBase returns a URL object that describes the source
directory of the applet class file itself. Often this is the same as the
HTML file directory, but this is not always the case.

12

Introduction to Java Applets 12-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Additional Applet Features

Using the URL as a starting point, you can put sounds and images into
your applet.

● getImage(URL base, String target) fetches an image
from the file named by target located at the URL specified by
base . The returned value is an instance of the class Image .

● getAudioClip(URL base, String target) fetches a sound
from the file named by target located at the URL specified by
base . The returned value is an instance of the class AudioClip .

Note – The String target in getImage(URL, String) and
getAudioClip(URL, String) methods can include a relative
directory path from the URL. However, relative path names up the
directory hierarchy might not be allowed on some systems.

12

12-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple Image Test

The following applet retrieves the image file
graphics/surferDuke.gif relative to the directory path returned by
the getDocumentBase method and displays it.

1 // Applet which shows an image of Duke in surfing mode
2
3 import java.awt.*;
4 import java.applet.Applet;
5
6 public class HwImage extends Applet {
7 Image duke;
8
9 public void init() {
10 duke = getImage(getDocumentBase(),
11 "graphics/surferDuke.gif");
12 }
13
14 public void paint(Graphics g) {
15 g.drawImage(duke, 25, 25, this);
16 }
17 }

The arguments to the drawImage method are:

● The Image object to be drawn.

● The x coordinate for the drawing.

● The y coordinate for the drawing.

● The image observer. An image observer is an interface that is
notified if the image’s status changes (such as what happens
during loading). The Applet class supports the ImageObserver
interface.

An image that is loaded by getImage changes over time after the call
is first issued. This is because the loading is done in the background.
Each time more of the image is loaded, the paint method is called
again. This call to the paint method happens because the applet was
registered as an observer when it passed itself as the fourth argument
to drawImage.

12

Introduction to Java Applets 12-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Audio Clips

The Java programming language also has methods to play audio clips.
These methods are in the java.applet.AudioClip class. You will
need the appropriate hardware for your computer to play audio clips.

Playing a Clip

The easiest way to listen to an audio clip is through an Applet play
method:

play(URL soundDirectory, String soundFile);

or, more simply:

play(URL soundURL);

For example,

play(getDocumentBase(), "bark.au");

plays bark.au , which exists in the same directory as the HTML file.

✓ In most instances, you cannot use a relative path name that goes up the path hierarchy;
for example, ../bark.au .

12

12-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple Audio Test

The following applet prints the message Audio Test in the
appletviewer and then plays the audio file, cuckoo.au in the sounds
directory:

1 // Applet which plays a sound on every mouse click
2
3 import java.awt.Graphics;
4 import java.awt.event.MouseAdapter;
5 import java.awt.event.MouseEvent;
6 import java.applet.Applet;
7
8 public class HwAudio extends Applet {
9 public void init() {
10 addMouseListener(new MouseAdapter() {
11 public void mouseClicked(MouseEvent event) {
12 play(getCodeBase(), "sounds/cuckoo.au");
13 }
14 });
15 }
16 public void paint(Graphics g) {
17 g.drawString("Audio Test", 25, 25);
18 }
19 }

✓ The applet play method creates an AudioClip (named clip) using the URL you give it and
then it calls clip.play() .

✓ Audio clips support only primitive audio formats and simple operations. The Java Media
Framework (JMF) supports a richer set of formats and more operations (including mixing
of sound sources).

12

Introduction to Java Applets 12-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping an Audio Clip

You can load audio clips like images; that is, you can load them and
play them later.

Loading an Audio Clip

To load an audio clip, use the getAudioClip method from the
java.applet.Applet class.

AudioClip sound;
sound = getAudioClip(getDocumentBase(), "bark.au");

Once a clip is loaded, use one of the three methods associated with it:
play , loop , or stop .

12

12-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Looping an Audio Clip

Playing an Audio Clip

Use the play method in the java.applet.AudioClip interface to
play the loaded audio clip once.

sound.play();

To start the clip playing and have it loop (automatically repeat), use
the loop method in java.applet.AudioClip .

sound.loop();

Stopping an Audio Clip

To stop a running clip, use the stop method in
java.applet.AudioClip .

sound.stop();

12

Introduction to Java Applets 12-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple Audio Looping Test

The following example automatically loops through a loaded audio
clip:

1 // Applet which continuously repeats a sound
2
3 import java.awt.Graphics;
4 import java.applet.*;
5
6 public class HwLoop extends Applet {
7 AudioClip sound;
8
9 public void init() {
10 sound = getAudioClip(getCodeBase(), "sounds/cuckoo.au");
11 }
12
13 public void paint(Graphics g) {
14 g.drawString("Audio Test", 25, 25);
15 }
16
17 public void start() {
18 sound.loop();
19 }
20
21 public void stop() {
22 sound.stop();
23 }
24 }

Note – Java 2 SDK supports a sound engine that provides playback for
Musical Instrument Digital Interface (MIDI) files and the full range of
.wav, aiff, and .au files. It uses the method newAudioClip(URL
url) . This method retrieves an audio clip from the given URL. The
parameter URL points to the audio clip. You can replace the
getAudioClip method in line 13 with this method. The
newAudioClip method does not need a String as the second
parameter. Only the URLparameter should be passed.

12

12-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Mouse Input

One of the most useful features that the Java programming language
supports is direct interactivity. A Java applet, like an application, can
pay attention to the mouse and react to mouse events. The following is
a quick review of mouse support, to help you understand the next
example.

In Module 9, you learned that the Java 2 SDK event model supports an
event type for each type of interactivity. Mouse events are received by
classes that implement the MouseListener interface, which receives
events for:

● mouseClicked – The mouse has been clicked (mouse button
pressed and then released in one motion)

● mouseEntered – The mouse cursor enters a component

● mouseExited – The mouse cursor leaves a component

● mousePressed – The mouse button is pressed down

● mouseReleased – The mouse button is later released

✓ Presses and releases are always received, but clicks are the result of a single “click” and
might not be received if the user holds the mouse button down.

12

Introduction to Java Applets 12-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Simple Mouse Test

The following program displays the location of the mouse click within
the applet.

1 // This applet is HelloWorld extended to watch for mouse
2 // input. "Hello World!" is reprinted at the location of
3 // the mouse press.
4
5 import java.awt.Graphics;
6 import java.awt.event.*;
7 import java.applet.Applet;
8
9 public class HwMouse extends Applet {
10 // "paint model data"
11 private int mouseX = 25;
12 private int mouseY = 25;
13
14 // Register an anonymous mouse events handler.
15 public void init() {
16 addMouseListener(new MouseHandler());
17 }
18
19 public void paint(Graphics g) {
20 g.drawString("Hello World!", mouseX, mouseY);
21 }
22
23 private class MouseHandler extends MouseAdapter {
24 public void mousePressed(MouseEvent evt) {
25 // record the position of the mouse
26 // in the "paint model data"
27 mouseX = evt.getX();
28 mouseY = evt.getY();
29 // inform AWT to repaint the applet
30 repaint();
31 }
32 }
33 }

12

12-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Reading Parameters

In an HTML file, a <param> tag in an <applet> context can pass
configuration information to the applet. For example:

1 <html>
2 <applet code="Parameters.class" width=200 height=200>
3 <param name=speed value="12">
4 <param name=distance value="500m">
5 </applet>
6 </html>

Inside the applet, you can use the method getParameter() to read
the following values.

1 // Parameter test applet. To see a change in "speed",
2 // you must supply it as a <param> tag in the HTML file
3 // which calls this applet.
4
5 import java.applet.Applet;
6 import java.awt.Graphics;
7
8 public class Parameters extends Applet {
9 private String toDisplay;
10 private int speed;
11
12 public void init() {
13 String pv;
14 pv = getParameter("speed");
15 if (pv == null){
16 speed = 10;
17 } else {
18 speed = Integer.parseInt (pv);
19 }
20 toDisplay = "Speed given: " + speed;
21 }
22
23 public void paint(Graphics g) {
24 g.drawString(toDisplay, 25, 25);
25 }
26 }

12

Introduction to Java Applets 12-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Reading Parameters

The method getParameter searches for a match of the name and
returns the associated value as a String .

If the parameter name cannot be found in any <param> tag inside the
<applet></applet> pair, then getParameter returns null . A
production program should handle this gracefully.

The parameter type is always a String . If you need this in other forms
you must convert it; for example, read an int parameter.

int speed = Integer.parseInt(getParameter (“ speed ”));

Parameter names, because of the nature of HTML, are not case
sensitive; however, it is good style to make them entirely uppercase or
lowercase. Enclose parameter value strings in double quotes if they
include embedded spaces. Value strings are case sensitive; their
capitalization is maintained regardless of whether you use double
quotes.

12

12-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Creating Applets

Exercise objective – In this lab you will become familiar with applet
programming in particular the paint method used for screen update
and refresh.

Preparation

In order to successfully complete this lab, you must be able to display
an applet with a browser.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod12). A listing of this directory will show
three subdirectories: one for each of the exercises below.

Exercise 1: Write an Applet (Level 1)

In this exercise you will modify an existing applet, compile it, and
view it using the appletviewer command.

Exercise 2: Create Concentric Squares (Level 2)

In this exercise you will create an applet that uses graphics methods to
draw concentric squares.

Exercise 3: Create a Java Rollover Applet (Level 3)

In this exercise you will create an applet that uses images and audio
clips.

12

Introduction to Java Applets 12-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Creating Applets

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

12

12-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you can

❑ Differentiate between a standalone application and an applet

❑ Write an HTML tag to call a Java applet

❑ Describe the class hierarchy of the applet and AWT classes

❑ Create the HelloWorld.java applet

❑ List the major methods of an applet

❑ Describe and use the painting model of AWT

❑ Use applet methods to read images and files from URLs

❑ Handle various mouse events within the applet

❑ Pass parameters to an applet from an HTML file using the
<param> tag

12

Introduction to Java Applets 12-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

How can you use applets on your company’s Web page to improve the
overall presentation?

13-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

GUI-BasedApplications 13

Objectives

Upon completion of this module, you should be able to:

● Identify the key AWT components and the events that they trigger

● Describe how to construct a menu bar, menu, and menu items in a
Java GUI

● Understand how to change the color and font of a component

● Use the Java printing mechanism

● Understand how to construct a GUI class that can be used within a
Frame or within an Applet

This module covers general topics about constructing applications and
applets using GUI presentation.

13

13-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answers to
all of these questions. Hold discussions where students have input; otherwise, if no one
can propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● You now know how to set up a Java GUI for both graphic output
and interactive user input. However, only a few of the components
from which GUIs can be built have been described. What other
components would be useful in a GUI?

● How can you create a menu for your GUI frame?

✓ There are many GUI components included in the AWT package. Menus are a little special.
Frames can contain a menu-bar; a menu-bar can contain zero or more menus; and a menu
can contain zero or more menu items (including sub-menus).

13

GUI-Based Applications 13-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Components

In Module 10, "Building Java GUIs," you were introduced to only one
component (Button) and several containers (Panel and Frame). In this
section, we will briefly introduce you to the gamut of AWT
components. For more information on the look and feel of these
components read Appendix C, "The AWT Component Library."

Table 13-1 AWT Component Descriptions

Component Type Description

Button A named rectangular box used for receiving mouse clicks.

Canvas A panel used for drawing.

Checkbox A component allowing the user to select an item.

CheckboxMenuItem A checkbox within a menu.

Choice A pull-down static list of items.

Component The parent of all AWT components, except menu components.

Container The parent of all AWT containers.

Dialog The base class of all modal dialog boxes.

Frame The base class of all GUI windows with window manager controls.

Label A text string component.

List A component that contains a dynamic set of items.

Menu An element under the menu bar, which contains a set of menu items.

MenuItem An item within a menu.

Panel A basic container class used most often to create complex layouts.

Scrollbar A component which allows a user to "select from a range of values."

ScrollPane A container class which implements automatic horizontal and/or vertical
scrolling for a single child component.

TextArea A component that allows the user to enter a block of text.

TextField A component that allows the user to enter a single line of text.

Window The base class of all GUI windows, with no window manager controls.

13

13-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

AWT Components

Component Events

Table 13-2 shows the basic AWT components and the event
listeners that can be associated with that type of component

Table 13-2 Components and Their Listeners.

Act - ActionListener , Adj - AdjustmentListener ,
Cmp - ComponentListener , Cnt - ContainerListener ,
Foc - FocusListener , Itm - ItemListener , Key - KeyListener ,
Mou - MouseListener , MM - MouseMotionListener ,
Text - TextListener , Win - WindowListener

Component Type Act Adj Cmp Cnt Foc Itm Key Mou MM Text Win

Button ✓ ✓ ✓ ✓ ✓ ✓

Canvas ✓ ✓ ✓ ✓ ✓

Checkbox ✓ ✓ ✓ ✓ ✓ ✓

CheckboxMenuItem ✓

Choice ✓ ✓ ✓ ✓ ✓ ✓

Component ✓ ✓ ✓ ✓ ✓

Container ✓ ✓ ✓ ✓ ✓ ✓

Dialog ✓ ✓ ✓ ✓ ✓ ✓ ✓

Frame ✓ ✓ ✓ ✓ ✓ ✓ ✓

Label ✓ ✓ ✓ ✓ ✓

List ✓ ✓ ✓ ✓ ✓ ✓ ✓

MenuItem ✓

Panel ✓ ✓ ✓ ✓ ✓ ✓

Scrollbar ✓ ✓ ✓ ✓ ✓ ✓

ScrollPane ✓ ✓ ✓ ✓ ✓ ✓

TextArea ✓ ✓ ✓ ✓ ✓ ✓

TextField ✓ ✓ ✓ ✓ ✓ ✓ ✓

Window ✓ ✓ ✓ ✓ ✓ ✓ ✓

13

GUI-Based Applications 13-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

How to Create a Menu

A Menu is different from other components because you cannot add a
Menu to ordinary containers and have them laid out by the layout
manager. You can add menus only to a menu container. You can start a
menu “tree” by putting a menu bar in a Frame, using the
setMenuBar() method. From that point, you can add menus to the
menu bar and menus or menu items to the menus.

Pop-up menus are an exception because they appear as floating
windows and, therefore, do not require layout.

The Help Menu

Using the menu bar, you can designate one menu to be the Help
menu. You do this using the method setHelpMenu(Menu) . You must
add the menu to be treated as the Help menu to the menu bar; it is
then treated in the same way as the Help menu for the local platform.
For X/Motif-type systems, this involves flushing the menu entry to the
right end of the menu bar.

13

13-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating a MenuBar

A MenuBar component is a horizontal menu. You can only add it to a
Frame object, and it forms the root of all menu trees. A Frame displays
one MenuBar at a time. However, you can change the MenuBar based
on the state of the program so that different menus appear at various
points. For example:

1 Frame f = new Frame("MenuBar");
2 MenuBar mb = new MenuBar();
3 f.setMenuBar(mb);

Figure 13-1 MenuBar Component

The MenuBar does not support listeners. As part of the normal menu
behavior, anticipated events that occur in the region of a menu bar are
processed automatically.

13

GUI-Based Applications 13-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating a Menu

The Menu component provides a basic pull-down menu. You add it
either to a MenuBar or to another Menu. For example:

1 Frame f = new Frame("Menu");
2 MenuBar mb = new MenuBar();
3 Menu m1 = new Menu("File");
4 Menu m2 = new Menu("Edit");
5 Menu m3 = new Menu("Help");
6 mb.add(m1);
7 mb.add(m2);
8 mb.setHelpMenu(m3);
9 f.setMenuBar(mb);

Figure 13-2 Menu Component

Note – The menus shown here are empty, which accounts for the
appearance of the File menu.

You can add an ActionListener to a Menu object, but this would be
unusual. Normally, you use menus to display and control menu items,
which are discussed next.

13

13-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating a MenuItem

MenuItem components are the text leaf nodes of a menu tree. They are
added to a menu to complete it. For example:

1 MenuItem mi1 = new MenuItem("New");
2 MenuItem mi2 = new MenuItem("Save");
3 MenuItem mi3 = new MenuItem("Load");
4 MenuItem mi4 = new MenuItem("Quit");
5 mi1.addActionListener(this);
6 mi2.addActionListener(this);
7 mi3.addActionListener(this);
8 mi4.addActionListener(this);
9 m1.add(mi1);
10 m1.add(mi2);
11 m1.add(mi3);
12 m1.addSeparator();
13 m1.add(mi4);

Figure 13-3 MenuItem Component

Usually you add an ActionListener to a MenuItem object to provide
behavior for the menus.

13

GUI-Based Applications 13-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Creating a CheckboxMenuItem

CheckboxMenuItem is a checkable menu item, so you can have
selections (on or off choices) listed in menus. For example:

1 MenuBar mb = new MenuBar();
2 Menu m1 = new Menu("File");
3 Menu m2 = new Menu("Edit");
4 Menu m3 = new Menu("Help");
5 mb.add(m1);
6 mb.add(m2);
7 mb.setHelpMenu(m3);
8 f.setMenuBar(mb);
9
10 MenuItem mi2 = new MenuItem("Save");
11 mi2.addActionListener(this);
12 m1.add(mi2);
13
14 CheckboxMenuItem mi5 = new CheckboxMenuItem("Persistent");
15 mi5.addItemListener(this);
16 m1.add(mi5);

Figure 13-4 CheckboxMenuItem Component

You should monitor the CheckboxMenuItem using the ItemListener
interface. The itemStateChanged method is called when the checkbox
state is modified.

13

13-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Controlling Visual Aspects

You can control the colors used for the foreground and the background
of AWT components.

✓ Some platforms do not allow the colors to be changed on specific components. For
example, Microsoft Windows does not allow you to alter a button’s color.

Colors

You use two methods to set the colors of a component:

● setForeground()

● setBackground()

Both of these methods take an argument that is an instance of the
java.awt.Color class. You can use constant colors referred to as
Color.red, Color.blue , and so on. The full range of predefined
colors is listed in the documentation page for the Color class.

13

GUI-Based Applications 13-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Controlling Visual Aspects

Colors (Continued)

In addition, you can create a specific color, such as the following:

int r = 255;
int g = 255;
int b = 0;
Color c = new Color(r, g, b);

Such a constructor creates a color based on the specified intensities
(in a range of 0 to 255 for each) of red, green, and blue.

13

13-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Controlling Visual Aspects

Fonts

You can specify the font used for displaying text in a component by
using the method setFont() . The argument to this method should be
an instance of the java.awt.Font class.

No constants are defined for fonts, but you can create a font by
specifying the name of the font, the style, and the point size.

Font f = new Font("TimesRoman", Font.PLAIN, 14);

Standard font names include the following:

● Font.Dialog

● Font.DialogInput

● Font.Serif

● Font.SansSerif

● Font.Monospaced

13

GUI-Based Applications 13-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Controlling Visual Aspects

Fonts (Continued)

You can determine a full list of fonts by using the following code:

GraphicsEnvironment ge =
GraphicsEnvironment.getLocalGraphicsEnvironment();

Font[] fonts = ge.getAllFonts();

The following lists the font-style constants, which are actually int
values:

● Font.BOLD

● Font.ITALIC

● Font.PLAIN

● Font.BOLD + Font.ITALIC

You should specify point sizes using an int value.

✓ Java 2D has expanded the available fonts substantially. Java 2D is discussed briefly in
Appendix E, "Java Foundation Classes."

13

13-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Controlling Visual Aspects

The Toolkit Class

The Toolkit class is an abstract superclass of all platform-specific
implementation of the AWT. Subclasses of this class are used to bind
the various AWT components to particular native platform
implementations. Toolkit also supplies a set of useful methods:

● getDefaultToolkit – This static method returns the current
Toolkit object

● getImage(String filename) – This method loads an image
from a file

● getScreenResolution – This method returns the number of
"pixels per inch"

● getScreenSize – This method returns a Dimension object that
hold the width and height of the screen in pixels

● getPrintJob – This method returns a unique print job object

13

GUI-Based Applications 13-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Printing

As of JDK1.1, printing is handled in a fashion that closely parallels
screen display. A special kind of java.awt.Graphics object is
obtained so that any draw instructions sent to that graphic are
destined for the printer.

The printing system allows the use of local printer control
conventions. When users start a print operation, they see a printer
selection dialog box. They choose options, such as paper size, print
quality, and which printer to use. For example:

1 Frame f = new Frame("Print test");
2 Toolkit toolkit = frame.getToolkit();
3 PrintJob job = toolkit.getPrintJob(frame, "Test Printing", null);
4 Graphics g = job.getGraphics();
5 frame.printComponents(g);
6 g.dispose();
7 job.end();

These lines create a Graphics object that is “connected” to the printer
chosen by the user.

13

13-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Printing

Obtain the Graphics object from the print job object:

g = job.getGraphics();

You can use any of the Graphics class’s drawing methods to write to
the printer. Alternatively, as shown here, you can ask a component to
draw itself onto the graphic.

f.printComponents(g);

The print() method asks a component to draw itself in this way, but
it only relates to the component for which it has been called. In the
case of a container, you can use the printComponents() method to
draw the container and all of its components on the printer.

After the page of output is created, use the dispose() method to
submit that page to the printer. This also frees up any operating
system resources that may have been allocated to the print job.

✓ This seems strange, but that’s what the PrintJob.getGraphics method in the API docs
says.

g.dispose();

When you have completed the job, call the end() method on the print
job object. This indicates that the print job is complete and allows the
printer spooling system to run the job and release the printer for other
jobs.

job.end();

13

GUI-Based Applications 13-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dual-Purpose Code

With a little bit of effort you can write a GUI class (constituting a
complete "application panel") that can be used in two contexts: as a
stand-alone application within a frame and as an applet within a
browser.

The trick is to encapsulate all of the "application presentation" within a
class that implements the top-level GUI layout. This GUI object acts as
a mediator between all of the GUI components within its content panel.
You then create two classes that use that GUI object: one class for the
stand-alone application, which launches a frame, and one class that
extends Applet, which constructs the GUI object in the init method
and embeds the GUI content panel within the applet’s panel.

✓ There are many ways of creating a GUI that is reusable in the context of a Frame or Applet .
This technique uses a class that implements a GUI on a Panel and that panel is then
inserted into the frame or applet. This makes much more sense in Swing where both
JFrame and JApplet have a setContentPane method.

13

13-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dual-Purpose Code

Example

To demonstrate how this is done we will use a fictitious
SalesOrderGUI . Figure 13-5 shows a UML model of this scenario. The
SalesOrderApp class implements a stand-alone application that uses a
SalesOrderGUI object. Notice that the main and launchFrame
methods have been placed in the SalesOrderApp class. The
SalesOrderGUI class includes an attribute called contentPanel and a
public accessor method called getContentPanel . It is within this
method that the GUI is constructed. The SalesOrderApplet class uses
a SalesOrderGUI object in the init method.

Figure 13-5 The UML Model of a Dual-Purpose GUI Scenario

SalesOrderGUI

-contentPanel : Panel

+SalesOrderGUI()

java.applet.Applet

SalesOrderApplet

+init()

SalesOrderApp

+main(args : String[])

+launchFrame()

+getContentPanel() : Panel

<<
Use

s>
><<Uses>>

13

GUI-Based Applications 13-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dual-Purpose Code

Example (Continued)

The following code fragments show the source code of the
SalesOrderGUI class.

import java.awt.*;
import java.awt.event.*;

public class SalesOrderGUI {
 // declaration of GUI components
 ...
 private Panel contentPanel = null;

 public SalesOrderGUI() {
// initialize GUI components

 ...
 }

 public Panel getContentPanel() {
 // return the panel if it has already been created
 if (contentPanel != null) {
 return contentPanel;
 }
 contentPanel = new Panel();

 // construction and layout of GUI components
 ...

 // Set up event handling
 ...

return contentPanel
 }
 // Event handler inner class declarations
 ...
}

The key feature of this code is that the complete GUI is contained in
the contentPanel attribute. This is what is used by the application
and applet classes. An instance of SalesOrderGUI acts as mediator
between its components (such as text fields and buttons) through the
event handlers. This mediation is achieved without any help or
hindrance from the context that the GUI is running in: stand-alone or
applet.

13

13-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dual-Purpose Code

Example (Continued)

The following is the complete source code of the SalesOrderApp class.

1 import java.awt.Frame;
2 import java.awt.BorderLayout;
3 import java.awt.event.WindowAdapter;
4 import java.awt.event.WindowEvent;
5
6 public class SalesOrderApp {
7
8 private static void launchFrame() {
9 SalesOrderGUI salesGUI = new SalesOrderGUI();
10 Frame f = new Frame("SalesOrder");
11
12 f.addWindowListener(new WindowAdapter() {
13 public void windowClosing(WindowEvent event) {
14 System.exit(0);
15 }
16 });
17 f.setSize(200, 200);
18 f.add(salesGUI.getContentPanel(), BorderLayout.CENTER);
19 f.setVisible (true);
20 }
21
22 public static void main(String args[]) {
23 launchFrame();
24 }
25 }

SalesOrderApp class never needs to be instantiated: All of its methods
are static. The main method calls the launchFrame method. The
launchFrame method does all the work. It creates a SalesOrderGUI
object and a frame. On line 18, it retrieves the content panel of the
SalesOrderGUI object and places it in the "center" border of the frame.
It then makes the frame visible which starts the application running.

13

GUI-Based Applications 13-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dual-Purpose Code

Example (Continued)

The following is the complete source code of the SalesOrderApplet
class.

1 import java.applet.Applet;
2 import java.awt.BorderLayout;
3
4 public class SalesOrderApplet extends Applet {
5 public void init() {
6 SalesOrderGUI salesGUI = new SalesOrderGUI();
7 setLayout(new BorderLayout());
8 add(salesGUI.getContentPanel(), BorderLayout.CENTER);
9 }
10 }

The SalesOrderApplet class is instantiated by the appletviewer or
browser. When the init method is called a SalesOrderGUI object is
created. The content panel of the SalesOrderGUI object is added to
the applet’s "center" border.

This example was particularly easy for the SalesOrderApplet class
code. Other cases may need to have special code to start and stop the
GUI mediator.

13

13-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Discussion of Dual-Purpose Code

There are several issues that you should consider in determining
whether to construct your GUI classes for dual purposes. The most
important issue is whether or not your business wants to present the
same look and feel (and functionality) over the internet. Typically a
company will want two different sales order forms: one for internal
use and one for customers on the Web.

Another issue is Java security. Applets run in a sandbox and do not
have access to the same features as a full application does, such as file
I/O and network calls to machines other than the server.

✓ Java 2 security features may allow applets to override the browser’s basic security
measures.

Another issue is communication between the client (as an applet) and
the application or database server. Typically such connections use non-
HTTP protocols, which might not be available behind the client
browser’s firewall.

13

GUI-Based Applications 13-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing

AWT is the predominate GUI toolkit for Java technology development.
However, as of Java 2 SDK there is another option: Swing. Swing (as
part of the Java Foundation Classes) is a second-generation GUI toolkit
that is included in Java 2 SDK as a standard extension. Swing has
many improvements over AWT. We will only cover a few of these
here.

Swing builds on top of AWT (using Color and Font, and so on) but it
implements its component classes without using the platform-
dependent peers that are used in AWT components. This makes Swing
components "light-weight." Swing also adds a variety of new
components including a table and tree component.

✓ You may want to have students run the Swing Demo:
java -cp . SwingSet
java -jar SwingSet.jar

✓ This would be a good time to tell students about the Sun course SL320: "GUI Construction
in Java Foundation Classes" which focuses on Swing and other JFC APIs.

13

13-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Building GUI-Based Applications

Exercise objective – You will write, compile, and run the revised
ChatClient GUI which includes menus. You will also rewrite the GUI
code to be used both as a stand-alone application and as an applet.

Preparation

In order to successfully complete this lab, you must have a clear
understanding of constructing a menu and of dual-purpose code
construction.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod13). A listing of this directory will show
two subdirectories: one for each of the exercises below.

Exercise 1: Finish the ChatClient GUI (Level 1 Lab)

In this exercise you will finish the GUI for a "chat room" application.
You will add menus to it and use a dialog box.

Exercise 2: Create Dual Code for the Calculator GUI (Level 2 Lab)

In this exercise you will convert the Calculator GUI to be dual-
purpose: existing both as a stand-alone application and as an applet.

13

GUI-Based Applications 13-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Working With Events

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

13

13-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you can

❑ Identify the key AWT components and the events that they trigger

❑ Describe how to construct a menu bar, menu, and menu items in a
Java GUI

❑ Understand how to change the color and font of a component

❑ Use the Java printing mechanism

❑ Understand how to construct a GUI class that can be used within a
Frame or within an Applet

13

GUI-Based Applications 13-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

What problems occur when your GUI code must wait for the
application logic to perform its job?

What are the limitation of AWT?

14-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads 14

Objectives

Upon completion of this module, you should be able to:

● Define a thread

● Create separate threads in a Java software program, controlling the
code and data that are used by that thread

● Control the execution of a thread and write platform-independent
code with threads

● Describe the difficulties that might arise when multiple threads
share data

● Use wait and notify to communicate between threads

● Use synchronized to protect data from corruption

● Explain why suspend , resume, and stop methods have been
deprecated in JDK 1.2

This module covers multithreading, which allows a program to do
multiple tasks at the same time.

14

14-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answer to
this question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● How do you get programs to perform multiple tasks concurrently?

✓ There are times when a program needs to do multiple tasks concurrently. For example, a
Web browser displaying a sports Web page runs a Java applet spinning a football in the
corner, but leaves the scrollbar active so the Web page can be traversed at the same time.
The Web browser is multithreaded, allowing this flexibility; without multithreading, the
browser would be totally preoccupied with spinning the football and you would never be
able to scroll the Web page. This module discusses how to set up multiple threads in a
single program, so that you can do multiple tasks concurrently.

✓ Multithreading is useful even in programs running on a single-processor computer. In this
scenario, thread two runs while thread one is blocked waiting for I/O. The I/O can take
place in parallel with the CPU running the other thread. In a single-threaded case, thread
two would have to wait until thread one finished.

✓ Data corruption can result if two independent threads access the same data at the same
time. Threads running independently yet sharing common data need to be coordinated.
Furthermore, the timing of when one thread runs might depend on the other thread, as in
a producer/consumer problem. This module discusses the ramifications of sharing data
between threads, and discusses how to coordinate multiple threads sharing the same
data.

14

Threads 14-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads

What Are Threads?

A simplistic view of a computer is that it has a CPU that performs
computations, read-only memory (ROM) which contains the program
that the CPU executes, and random-access memory (RAM) which
holds the data on which the program operates. In this view, there is
only one job being performed. A more complete view of most modern
computer systems allows for the possibility of performing more than
one job at the same time.

You do not need to be concerned with how this is achieved, just
consider the implications from a programming point of view.
Performing more than one job is similar to having more than one
computer. In this module, a thread, or execution context, is considered to
be the encapsulation of a virtual CPU with its own program code and
data. The class java.lang.Thread allows you to create and control
threads.

Note – This module uses the term Thread when referring to the class
java.lang.Thread and thread when referring to an execution context.

14

14-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Three Parts of a Thread

A thread or execution context is composed of three main parts:

● A virtual CPU

● The code the CPU is executing

● The data on which the code works

14

Threads 14-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Three Parts of a Thread (Continued)

A process is a program in execution. One or more threads constitute a
process. A thread is composed of CPU, code, and data, as illustrated in
Figure 14-1.

Figure 14-1 A Thread

Code can be shared by multiple threads, independent of data. Two
threads share the same code when they execute code from instances of
the same class.

Likewise, data may or may not be shared by multiple threads,
independent of code. Two threads share the same data when they
share access to a common object.

In Java programming, the virtual CPU is encapsulated in an instance
of the Thread class. When a thread is constructed, the code and the
data that define its context are specified by the object passed to its
constructor.

CPU

Code Data

A thread or
execution context

14

14-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Creating the Thread

This section examines how you create a thread, and how you use
constructor arguments to supply the code and data for a thread when
it runs.

A Thread constructor takes an argument that is an instance of
Runnable . An instance of Runnable is made from a class that
implements the Runnable interface (that is, it provides a public
void run() method).

For example:

1 public class ThreadTester {
2 public static void main(String args[]) {
3 HelloRunner r = new HelloRunner();
4 Thread t = new Thread(r);
5 t.start();
6 }
7 }
8
9 class HelloRunner implements Runnable {
10 int i;
11
12 public void run() {
13 i = 0;
14
15 while (true) {
16 System.out.println(“Hello “ + i++);
17 if (i == 50) {
18 break;
19 }
20 }
21 }
22}

First, the main method constructs an instance r of class HelloRunner .
Instance r has its own data, in this case the integer i . Because the
instance, r , is passed to the Thread class constructor, r ’s integer i is
the data with which the thread works when it runs. The thread always
begins executing at the run method of its loaded Runnable instance
(r in this example.).

14

Threads 14-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Creating the Thread (Continued)

A multithreaded programming environment allows you to create
multiple threads based on the same Runnable instance. You can do
this as follows:

Thread t1 = new Thread(r);
Thread t2 = new Thread(r);

In this case, both threads share the same data and code.

14

14-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Creating the Thread (Continued)

To summarize, a thread is referred to through an instance of a Thread
object. The thread begins execution at the start of a loaded Runnable
instance’s run method. The data that the thread works on is taken
from the specific instance of Runnable , which is passed to that Thread
constructor.

Figure 14-2 Thread Creation

CPU

Code DataHelloRunner Instance "r "

Thread t}New thread

class of HelloRunner

14

Threads 14-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Starting the Thread

A newly created thread does not start running automatically. You must
call its start method. For example, you can issue the following
command after line 4 of the previous example:

t.start();

Calling start places the virtual CPU embodied in the thread into a
runnable state, meaning that it becomes viable for scheduling for
execution by the JVM. This does not necessarily mean that the thread
runs immediately.

14

14-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Thread Scheduling

In Java technology, threads are usually preemptive, but not necessarily
timesliced (the process of giving each thread an equal amount of CPU
time). It is a common mistake to believe that "preemptive" is a fancy
word for "does timeslicing."

✓ For the runtime on a Solaris Operating Environment platform, Java technology does not
preempt threads of the same priority. However, the runtime on Microsoft Windows
platforms uses timeslicing, so it preempts threads of the same priority and even threads
of higher priority. Preemption is not guaranteed; however, most JVM implementations
result in behavior that appears to be strictly preemptive. Across JVM implementations,
there is no absolute guarantee of preemption or timeslicing. The only guarantees lie in the
coder’s use of wait and sleep .

The model of a preemptive scheduler is that many threads might be
runnable, but only one thread is actually running. This thread
continues to run until it ceases to be runnable or another thread of
higher priority becomes runnable. In the latter case, the lower priority
thread is preempted by the thread of higher priority, which gets a
chance to run instead.

A thread might cease to be runnable (that is, become blocked) for a
variety of reasons. The thread’s code can execute a Thread.sleep()
call, deliberately asking the thread to pause for a fixed period of time.
The thread might have to wait to access a resource, and cannot
continue until that resource becomes available.

All threads that are runnable are kept in pools according to priority.
When a blocked thread becomes runnable, it is placed back into the
appropriate runnable pool. Threads from the highest priority non-
empty pool are given CPU time.

✓ The last sentence is worded loosely because: (1) In most JVM implementations, priorities
seem to work in a preemptive manner, although there is no guarantee that priorities have
any meaning at all; and (2) Microsoft Window’s nice values affect thread behavior so that
it is possible that a Java priority 4 thread might be running, in spite of the fact that a
runnable Java priority 5 thread is waiting for the CPU.

✓ In reality, many JVMs implement pools as queues, but this is not guaranteed behavior.

14

Threads 14-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Thread Scheduling (Continued)

A Thread object can exist in several different states throughout its
lifetime. Figure 14-3 illustrates this idea.

Figure 14-3 Basic Thread States Transition Diagram

✓ With JDK1.2, the suspend , resume , and stop methods have been deprecated. suspend is
deadlock prone and stop is unsafe in terms of date protection.

Although the thread becomes runnable, it does not necessarily start
running immediately. Only one action at a time is performed on a
machine with one CPU. The following section describes how the CPU
is allocated when more than one thread is runnable.

Runnable

New Dead

Running
Scheduler run() completes

start()

Blocked

unblocked blocking event

14

14-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Threads in Java Programming

Thread Scheduling (Continued)

Given that Java threads are not necessarily timesliced, you must
ensure that the code for your threads gives other threads a chance to
execute from time to time. This can be achieved by issuing the sleep
call at various intervals.

1 public class Runner implements Runnable {
2 public void run() {
3 while (true) {
4 // do lots of interesting stuff
5 :
6 // Give other threads a chance
7 try {
8 Thread.sleep(10);
9 } catch (InterruptedException e) {
10 // This thread’s sleep was interrupted
11 // by another thread
12 }
13 }
14 }
15}

✓ You can interrupt a thread with a Thread.interrupt() method.

This code example shows how the try and catch block is used.
Thread.sleep() and other methods that can pause a thread for
periods of time are interruptible. Threads can call another thread’s
interrupt method, which signals the paused thread with an
InterruptedException.

sleep is a static method in the Thread class, because it operates on
the current thread, and is referred to as Thread.sleep(x) . The sleep
method’s argument specifies the minimum number of milliseconds for
which the thread must be made inactive. The execution of the thread
does not resume until after this period unless it is interrupted, in
which case execution is resumed earlier.

14

Threads 14-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Control of Threads

Terminating a Thread

When a thread completes execution and terminates, it cannot run
again.

You can stop a thread by using a flag that indicates that the run
method should exit.

1 public class Runner implements Runnable {
2 private boolean timeToQuit=false;
3
4 public void run() {
5 while (! timeToQuit) {
6 ...
7 }
8 // clean up before run() ends
9 }
10
11 public void stopRunning() {
12 timeToQuit=true;
13 }
14 }

1 public class ThreadController {
2 private Runner r = new Runner();
3 private Thread t = new Thread(r);
4
5 public void startThread() {
6 t.start();
7 }
8
9 public void stopThread() {
10 // use specific instance of Runner
11 r.stopRunning();
12 }
13 }

✓ The method stop of the Thread class has been deprecated in JDK 1.2.

14

14-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Control of Threads

Terminating a Thread (Continued)

Within a particular piece of code, you can obtain a reference to the
current thread using the static Thread method currentThread ; for
example:

1 public class NameRunner implements Runnable {
2 public void run() {
3 while (true) {
4 // lots of interesting stuff
5 }
6 // Print name of the current thread
7 System.out.println(
8 "Thread " + Thread.currentThread().getName() + " completed");
9 }
10 }

14

Threads 14-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Control of Threads

Testing a Thread

A thread can be in an unknown state. Use the method isAlive to
determine if a thread is still viable. The term Alive does not imply that
the thread is running; it returns true for a thread that has been started
but has not completed its task.

Accessing Thread Priority

Use the getPriority method to determine the current priority of the
thread. Use the setPriority method to set the priority of the thread.
The priority is an integer value. The Thread class includes the
following constants:

Thread.MIN_PRIORITY
Thread.NORM_PRIORITY
Thread.MAX_PRIORITY

14

14-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Control of Threads

Putting Threads on Hold

Mechanisms exist that can temporarily block the execution of a thread.
You can resume execution as if nothing happened. The thread appears
to have executed an instruction very slowly.

The Thread.sleep() Method

The sleep method is one way to halt a thread for a period of time.
Recall that the thread does not necessarily resume its execution at the
instant that the sleep period expires. This is because some other thread
could be executing at that instant and might not be unscheduled
unless (a) the thread "waking up" is of a higher priority, or (b) the
running thread blocks for some other reason.

✓ The methods suspend and resume of the Thread class have been deprecated in JDK 1.2.
These methods, plus the stop method, have been deprecated for essentially the same
reason: They do not work well within the Java technology’s model of object
synchronization.

14

Threads 14-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Control of Threads

Putting Threads on Hold (Continued)

The join Method

The join method causes the current thread to wait until the thread on
which the join method is called terminates. For example:

1 public static void main(String[] args) {
2 Thread t = new Thread(new Runner());
3 t.start();
4 ...
5 // Do stuff in parallel with the other thread for a while
6 ...
7 // Wait here for the timer thread to finish
8 try {
9 t.join();
10 } catch (InterruptedException e) {
11 // t came back early
12 }
13 ...
14 // Now continue in this thread
15 ...
16 }

You can also call the join method with a timeout value in
milliseconds. For example:

void join(long timeout);

where the join method either suspends the current thread for timeout
milliseconds or until the thread it calls on terminates.

14

14-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Control of Threads

Putting Threads on Hold (Continued)

The Thread.yield() Method

Use the method Thread.yield() to give other threads of the same
priority a chance to execute. If other threads at the same priority are
runnable, yield places the calling thread into the runnable pool and
allows another thread to run. If no other threads are runnable at the
same priority, yield does nothing.

A sleep call gives threads of lower priority a chance to execute. The
yield method gives only threads of the same priority a chance to
execute.

✓ This is not necessarily true for a timesliced operating system. A timesliced operating
system gives threads at a lower priority a chance to execute, and because a higher
priority thread might exist and not be executing, a timesliced operating system can also
give a higher priority thread a chance to execute as a result of the yield method being
called.

14

Threads 14-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Other Ways to Create Threads

So far, you have seen how you can create thread contexts with a
separate class that implements Runnable . In fact, this is not the only
possible approach. The Thread class implements the Runnable
interface itself, so you can create a thread by creating a class that
extends Thread rather than implements Runnable .

1 public class MyThread extends Thread {
2 public void run() {
3 while (running) {
4 // do lots of interesting stuff
5 try {
6 sleep(100);
7 } catch (InterruptedException e) {
8 // sleep interrupted
9 }
10 }
11 }
12
13 public static void main(String args[]) {
14 Thread t = new MyThread();
15 t.start();
16 }
17 }

14

14-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Other Ways to Create Threads

Selecting a Way to Create Threads

Given a choice of approaches, how can you decide between them?
Each approach has its advantages that are described in this next
section.

14

Threads 14-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Other Ways to Create Threads

Selecting a Way to Create Threads (Continued)

Advantages of Implementing Runnable

The following describes the advantages of implementing Runnable :

● From an object-oriented design point of view, the Thread class is
strictly an encapsulation of a virtual CPU and, as such, it should
be extended only when you are changing or extending the
behavior of that CPU model. Because of this, and the value of
making the distinction between the CPU, code, and data parts of a
running thread, this course module has used this approach.

● Because Java technology allows only single inheritance, you
cannot extend any other class, such as Applet , if you have already
extended Thread . In some situations, this forces you to take the
approach of implementing Runnable .

● Because there are times when you are obliged to implement
Runnable , you might prefer to be consistent and always do it this
way.

Advantage of Extending Thread

The advantage of extending Thread is that when a run method is
embodied in a class that extends the Thread class. This makes for
slightly more simple code.

Note – While both techniques are possible, you should consider very
carefully why you would extend Thread . Do so only while you are
changing or extending the behavior of a thread, not just implementing
a run method.

14

14-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Basic Threads

Exercise objective – In this lab you will become familiar with the
concepts of multithreading by writing a simple multithreaded
program.

Preparation

To successfully complete this lab, you must understand how to create,
run and terminate a thread.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod14). A listing of this directory will show
three subdirectories. This one will be in the directory called
exercise1 .

Exercise 1: Use Basic Threads (Level 1)

In this exercise you will have hands-on experience in the creation and
running of threads.

14

Threads 14-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

✓ Use synchronized in your code to prevent data corruption.

This section describes the use of the synchronized keyword. It
provides the Java programming language with a mechanism that
allows a programmer to control threads that are sharing data.

The Problem

Imagine a class that represents a stack. This class might appear first as:

1 public class MyStack {
2 int idx = 0;
3 char [] data = new char[6];
4
5 public void push(char c) {
6 data[idx] = c;
7 idx++;
8 }
9
10 public char pop() {
11 idx--;
12 return data[idx];
13 }
14}

The class makes no effort to handle the overflow or underflow of the
stack, and the stack capacity is limited. However, these aspects are not
relevant to this discussion.

The behavior of this model requires that the index value contains the
array subscript of the next empty cell in the stack. The "predecrement,
postincrement” approach is used to generate this information.

14

14-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

The Problem (Continued)

Imagine now that two threads have a reference to a single instance of
this class. One thread is pushing data onto the stack and the other,
more or less independently, is popping data off of the stack. In
principle, the data is added and removed successfully. However, there
is a potential problem.

Suppose thread a is adding characters and thread b is removing
characters. Thread a has just deposited a character, but has not yet
incremented the index counter. For some reason this thread is now
preempted. At this point, the data model represented in the object is
inconsistent.

buffer |p|q|r| | | |
idx = 2 ^

Specifically, consistency requires either idx = 3 or that the character
has not yet been added.

If thread a resumes execution, there might be no damage, but suppose
thread b was waiting to remove a character. While thread a is waiting
for another chance to run, thread b gets its chance to remove a
character.

There is an inconsistent data situation on entry to the pop method, yet
the pop method proceeds to decrement the index value.

buffer |p|q|r| | | |
idx = 1 ^

This effectively serves to ignore the character r. After this, it then
returns the character q. So far, the behavior has been as if the letter r
had not been pushed, so it is difficult to say that there is a problem.
But look at what happens when the original thread, a, continues to
run.

Thread a picks up where it left off, in the push method, and it proceeds
to increment the index value. Now you have the following:

buffer |p|q|r| | | |
idx = 2 ^

14

Threads 14-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

The Problem (Continued)

This configuration implies the q is valid and the cell containing r is the
next empty cell. In other words, q is read as having been placed into
the stack twice, and the letter r never appears.

This is a simple example of a general problem that arises when multiple
threads are accessing shared data. You need a mechanism to ensure that
shared data is in a consistent state before any thread starts to use it for
a particular task.

Note – One approach would be to prevent thread a from being
switched out until it had completed the critical section of code. This
approach is common in low-level machine programming but is
generally inappropriate in multi-user systems.

Note – Another approach, and the one on which Java technology
works, is to provide a mechanism to treat the data delicately. This
approach allows a thread atomic access to data regardless of whether
that thread gets switched out in the middle of performing that access.

14

14-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

The Object Lock Flag

In Java technology, every object has a flag associated with it. You can
think of this flag as a "lock flag." The keyword synchronized enables
interaction with this flag, and allows exclusive access to code that
affects shared data. The following is the modified code fragment:

public class MyStack {
...
public void push(char c) {
 synchronized(this) {

data[idx] = c;
idx++;

}
}
...

}

14

Threads 14-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

The Object Lock Flag (Continued)

When the thread reaches the synchronized statement, it examines the
object passed as the argument, and tries to obtain the lock flag from
that object before continuing. (see Figure 14-4)

Figure 14-4 Using the synchronized Statement Before a Thread

Object this

public void push(char c) {

synchronized (this) {

data[idx] = c;

idx++;

}

}

Thread before synchronized(this)

Code or
behavior

Data or
state

14

14-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

The Object Lock Flag (Continued)

Figure 14-5 Using the synchronized Statement After a Thread

You should realize that this has not protected the data. If the pop
method of the shared data object is not protected by synchronized ,
and pop is invoked by another thread, there is still a risk of damaging the
consistency of the data. All methods accessing shared data must
synchronize on the same lock if the lock is to be effective.

Object this

public void push(char c) {

synchronized (this) {

data[idx] = c;

idx++;

}

}

Thread after synchronized(this)

Code or
behavior

Data or
state

14

Threads 14-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

The Object Lock Flag (Continued)

Figure 14-6 illustrates what happens if pop is protected by
synchronized and another thread tries to execute an object’s pop
method while the original thread holds the synchronized object’s lock
flag.

Figure 14-6 Thread Trying to Execute synchronized

When the thread tries to execute the synchronized(this) statement,
it tries to take the lock flag from the object this . Because the flag is not
present, the thread cannot continue execution. The thread then joins a
pool of waiting threads that are associated with that object‘s lock flag.
When the flag is returned to the object, a thread that was waiting for
the flag is given it and the thread continues to run.

Object this

public char pop() {

synchronized (this) {

idx--;

return data[idx];

}

}

Thread, trying to execute
synchronized(this)

Waiting for

lock flag missing

object lock

Code or
behavior

Data or
state

14

14-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

Releasing the Lock Flag

A thread waiting for the lock flag of an object cannot resume running
until the flag is available. Therefore, it is important for the holding
thread to return the flag when it is no longer needed.

The lock flag is given back to its object automatically. When the thread
that holds the lock passes the end of the synchronized code block for
which the lock was obtained, the lock is released. Java technology
ensures that the lock is always returned automatically, even if an
encountered exception or break statement transfers code execution out
of a synchronized block. Also, if a thread executes nested blocks of
code that are synchronized on the same object, that object’s flag is
correctly released on exit from the outermost block and the innermost
block is ignored.

These rules make using synchronized blocks much simpler to manage
than equivalent facilities in some other systems.

14

Threads 14-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

synchronized – Putting It Together

The synchronized mechanism works only if all access to delicate data
occurs within the synchronized blocks.

You should mark delicate data protected by synchronized blocks as
private. Consider the accessibility of the data items that form the
delicate parts of the object. If these are not marked as private , they
can be accessed from code outside the class definition; therefore, other
programmers must not omit the protections that are required.

14

14-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

synchronized – Putting It Together (Continued)

A method consisting entirely of code belonging in a block
synchronized to this instance might put the synchronized keyword
in its header. The following two code fragments are equivalent:

public void push(char c) {
synchronized(this) {
:
:
}

}

public synchronized void push(char c) {
:
:

}

Why use one technique instead of the other?

If you use synchronized as a method modifier, the whole method
becomes a synchronized block. That can result in the lock flag being
held longer than necessary.

However, marking the method in this way allows users of the method
to know, from javadoc -generated documentation, that
synchronization is taking place. This can be important when designing
against deadlock (which is discussed in the next section). The javadoc
documentation generator propagates the synchronized modifier into
documentation files, but it cannot do the same for
synchronized(this) , which is found inside the method’s block.

14

Threads 14-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

Thread States

Synchronization is a special thread state. Figure 14-7 illustrates the
new state transition diagram for a thread.

Figure 14-7 Thread States Transition Diagram With Synchronization

Runnable

New Dead

Running
Scheduler run() completes

start()

Blocked

unblocked blocking event

Blocked in
object’s

lock pool

synchronizedacquires lock

14

14-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using synchronized in Java Technology

Deadlock

In programs where multiple threads are competing for access to
multiple resources, a condition known as deadlock can occur. This
occurs when one thread is waiting for a lock held by another thread,
but the other thread is waiting for a lock already held by the first
thread. In this condition, neither can proceed until after the other has
passed the end of its synchronized block. Because neither is able to
proceed, neither can pass the end of its block.

Java technology neither detects nor attempts to avoid this condition. It
is the responsibility of the programmer to ensure that a deadlock
cannot arise. A general rule of thumb for avoiding a deadlock is: If you
have multiple objects that you want to have synchronized access to,
make a global decision about the order in which you will obtain those
locks, and adhere to that order throughout the program. Release the
locks in the reverse order that you obtained them.

14

Threads 14-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Interaction – wait and notify

✓ Use wait and notify to communicate between threads. If multiple threads are waiting for the
same rendezvous object, then they must all be waiting for the same condition.

Different threads are created specifically to perform unrelated tasks.
However, sometimes the jobs they perform are actually related in
some way and it might be necessary to program some interactions
between them.

Scenario

Consider yourself and a cab driver as two threads. You need a cab to
take you to a destination and the cabbie wants to take on a passenger
to make a fare. So, each of you has a task.

14

14-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Interaction – wait and notify

The Problem

You expect to get into a cab and rest comfortably until the cabbie
notifies you that you have arrived at your destination. It would be
annoying, for both you and the cabbie, to ask every 2 seconds, “are we
there yet?” Between fares, the cabbie wants to sleep in the cab until a
passenger needs to be driven somewhere. The cabbie does not want to
have to wake up from this nap every 5 minutes to see if a passenger
has arrived at the cab stand. So, both threads would prefer to get their
jobs done in as relaxed a manner as possible.

The Solution

You and the cabbie require some way of communicating your needs to
each other. While you are busy walking down the street toward the
cab stand, the cabbie is sleeping peacefully in the cab. When you
notify the cabbie that you want a ride, the cabbie wakes up and begins
driving, and you get to relax. Once you have arrived at your
destination, the cabbie notifies you to get out of the cab and go to
work. The cabbie now gets to wait and nap again until the next fare
comes along.

14

Threads 14-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Interaction

wait and notify

The java.lang.Object class provides two methods, wait and
notify for thread communication. If a thread issues a wait call on a
rendezvous object x, that thread pauses its execution until another
thread issues a notify call on the same rendezvous object x.

In the previous scenario, the cabbie waiting in the cab translates to the
“cabbie” thread executing a cab.wait call, and your need to use the
cab translates to the “you” thread executing a cab.notify() call.

For a thread to call either wait or notify on an object, the thread must
have the lock for that particular object. In other words, wait and
notify are called only from within a synchronized block on the
instance on which they are being called. For this example, you require
a block starting with synchronized(cab) to permit either the
cab.wait or the cab.notify() call.

14

14-38 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Interaction

wait and notify (Continued)

The Pool Story

When a thread executes synchronized code that contains a wait call on
a particular object, that thread is placed in the wait pool for that object.
Additionally, the thread that calls wait automatically releases that
object’s lock flag. You can invoke different wait methods.

wait or wait(long timeout)

✓ If a thread that calls wait happens to be holding more than one object’s lock flag, only the
lock flag for the object associated with the wait call is released.

When a notify call is executed on a particular object, an arbitrary
thread is moved from that object’s wait pool to a lock pool where
threads stay until the object’s lock flag becomes available. The
notifyAll method moves all threads waiting on that object out of the
wait pool and into the lock pool. Only from the lock pool can a thread
obtain that object’s lock flag which allows the thread to continue
running where it left off when it called wait .

In many systems that implement the wait /notify mechanism, the
thread that wakes up is the one that has been waiting the longest.
However, Java technology does not guarantee this.

A notify call can be issued without regard to whether any threads are
waiting. If the notify method is called on an object when no threads
are blocked in the wait pool for that object’s lock flag, the call has no
effect. Calls to notify are not stored.

14

Threads 14-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Interaction

Thread States

The "wait pool" is also a special thread state. Figure 14-8 illustrates the
final state transition diagram for a thread.

Figure 14-8 Thread States Transition Diagram With wait /notify

Runnable

New Dead

Running
Scheduler run() completes

start()

Blocked

unblocked blocking event

Blocked in
object’s

lock pool

synchronizedacquires lock

Blocked in
object’s

wait poolnotify() or interrupt()

wait()
[must have lock]/
releases lock

14

14-40 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Interaction

Monitor Model for Synchronization

Coordination between two threads needing access to common data can
get complex. You must ensure that no thread leaves shared data in an
inconsistent state when there is the possibility that any other thread
can access that data. You also must ensure that your program does not
deadlock because threads cannot release the appropriate lock when
other threads are waiting for that lock.

In the cab example, the code relied on one rendezvous object, the cab,
on which wait and notify were executed. If someone was expecting a
bus, you would need a separate bus object on which to apply notify .
Remember that all threads in the same wait pool must be satisfied by
notification from that wait pool’s controlling object. Never design code
that puts threads expecting to be notified for different conditions in the
same wait pool.

14

Threads 14-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

The following code is an example of thread interaction that
demonstrates the use of wait and notify methods to solve a classic
producer-consumer problem.

Start by looking at the outline of the stack object and the details of the
threads that access it. Then look at the details of the stack and the
mechanisms used to protect the stack’s data and to implement the
thread communication based on the stack’s state.

The example stack class, called SyncStack to distinguish it from the
core class java.util.Stack , offers the following public API:

public synchronized void push(char c);
public synchronized char pop();

14

14-42 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

Producer

The producer thread runs the following method:

1 public void run() {
2 char c;
3
4 for (int i = 0; i < 200; i++) {
5 c = (char)(Math.random() * 26 +'A');
6 theStack.push(c);
7 System.out.println("Producer" + num + ": " + c);
8 try {
9 Thread.sleep((int)(Math.random() * 300));
10 } catch (InterruptedException e) {
11 // ignore it
12 }
13 }
14 }

This example generates 200 random uppercase characters and pushes
them onto the stack with a random delay of 0 to 300 milliseconds
between each push. Each pushed character is reported on the console,
along with an identifier for which producer thread is executing.

14

Threads 14-43
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

Consumer

The consumer thread runs the following method:

1 public void run() {
2 char c;
3 for (int i = 0; i < 200; i++) {
4 c = theStack.pop();
5 System.out.println("Consumer" + num + ": " + c);
6
7 try {
8 Thread.sleep((int)(Math.random() * 300));
9 } catch (InterruptedException e) { }
10
11 }
12 }

This example collects 200 characters from the stack, with a random
delay of 0 to 300 milliseconds between each attempt. Each popped
character is reported on the console, along with an identifier to
identify the consumer thread that is executing.

Now consider construction of the stack class. You are going to create a
stack that has a seemingly limitless size, using the ArrayList class.
With this design, your threads have only to communicate based on
whether the stack is empty.

✓ Designing code that also communicates information about the stack being full is more
complex. It requires multiple rendezvous objects and the use of semaphores. Time
constraints prevent discussing such a complex example here.

✓ You might remember the producer/consumer example from the older versions of this
course. This code worked because the test harness used only one producer thread and
one consumer thread. The notify calls were made on the single stack object, for different
reasons and whether the stack was full or empty. This setup is inherently flawed. As soon
as multiple producer and consumer threads are introduced, deadlock occurs.

14

14-44 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

SyncStack Class

A newly constructed SyncStack object’s buffer should be empty. You
can use the following code to build your class:

public class SyncStack {

private List buffer = new ArrayList(400);

public synchronized char pop() {
}

 public synchronized void push(char c) {
}

}

There are no constructors. It is considered good style to include a
constructor, but it has been omitted here for brevity.

14

Threads 14-45
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

SyncStack Class (Continued)

Now consider the push and pop methods. They must be
synchronized to protect the shared buffer. In addition, if the stack is
empty in the pop method, the executing thread must wait. When the
stack in the push method is no longer empty, waiting threads are
notified.

The pop method is as follows:

1 public synchronized char pop() {
2 char c;
3 while (buffer.size() == 0) {
4 try {
5 this.wait();
6 } catch (InterruptedException e) {
7 // ignore it...
8 }
9 }
10 c = ((Character)buffer.remove(buffer.size()-1)).charValue();
11 return c;
12 }

The wait call is made with respect to the stack object that shows how
the rendezvous is being made with a particular object. Nothing can be
popped from the stack when it is empty, so a thread trying to pop data
from the stack must wait until the stack is no longer empty.

The wait call is placed in a try/catch block because an interrupt
call can terminate the thread’s waiting period. The wait must also be
within a loop for this example. It must wait if its wait is interrupted
and the stack is still empty.

The pop method for the stack is synchronized for two reasons. First,
popping a character off of the stack affects the shared data buffer .
Second, the call to this.wait() must be within a block that is
synchronized on the stack object, which is represented by this .

14

14-46 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

SyncStack Class (Continued)

The push method uses this.notify() to release a thread from the
stack object’s wait pool. Once a thread is released, it can obtain the
lock on the stack, and continue executing the pop method which
removes a character from the stack’s buffer.

Note – In pop , the wait method is called before any modifications are
made to the stack’s shared data. This is important, because the data
must be in a consistent state before the object’s lock is released and a
thread’s execution changes the stack’s data.

You should also consider error checking. You might notice that there is
no explicit code to prevent a stack underflow. This is not necessary
because the only way to remove characters from the stack is through
the pop method, and this method causes the executing thread to enter
the wait state if no character is available. Therefore, error checking is
unnecessary.

The push method is similar; it affects the shared buffer and must also
be synchronized. In addition, because the push method adds a
character to the buffer, it is responsible for notifying threads that are
waiting for a non-empty stack. This notification is done with respect to
the stack object.

The push method is as follows:

public synchronized void push(char c) {
 this.notify();

Character charObj = new Character(c);
buffer.addElement(charObj);

}

14

Threads 14-47
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

SyncStack Class (Continued)

The call to this.notify() serves to release a single thread that called
wait because the stack is empty. Calling notify before the shared data
actually gets changed is of no consequence. The stack object’s lock is
released only upon exit from the synchronized block, so threads
waiting for that lock can obtain it while the stack data are being
changed by the pop method.

14

14-48 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

SyncStack Example

Complete Code

You must assemble the producer, consumer, and stack code into
complete classes. A test harness is required to bring these pieces
together. Pay particular attention to how SyncTest creates only one
stack object that is shared by all threads.

The following is an example of the SyncTest.java application code:

1 package mod13;
2
3 public class SyncTest {
4
5 public static void main(String[] args) {
6
7 SyncStack stack = new SyncStack();
8
9 Producer p1 = new Producer(stack);
10 Thread prodT1 = new Thread (p1);
11 prodT1.start();
12
13 Producer p2 = new Producer(stack);
14 Thread prodT2 = new Thread (p2);
15 prodT2.start();
16
17 Consumer c1 = new Consumer(stack);
18 Thread consT1 = new Thread (c1);
19 consT1.start();
20
21 Consumer c2 = new Consumer(stack);
22 Thread consT2 = new Thread (c2);
23 consT2.start();
24 }
25 }

14

Threads 14-49
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

SyncStack Example

Complete Code (Continued)

The following is an example of the Producer.java application code:

1 package mod13;
2
3 public class Producer implements Runnable {
4 private SyncStack theStack;
5 private int num;
6 private static int counter = 1;
7
8 public Producer (SyncStack s) {
9 theStack = s;
10 num = counter++;
11 }
12
13 public void run() {
14 char c;
15 for (int i = 0; i < 200; i++) {
16 c = (char)(Math.random() * 26 +'A');
17 theStack.push(c);
18 System.out.println("Producer" +num+ ": " +c);
19 try {
20 Thread.sleep((int)(Math.random() * 300));
21 } catch (InterruptedException e) {
22 // ignore it
23 }
24 }
25 }
26 }

14

14-50 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

SyncStack Example

Complete Code (Continued)

The following is an example of the Consumer.java application code:

1 package mod13;
2
3 public class Consumer implements Runnable {
4 private SyncStack theStack;
5 private int num;
6 private static int counter = 1;
7
8 public Consumer (SyncStack s) {
9 theStack = s;
10 num = counter++;
11 }
12
13 public void run() {
14 char c;
15 for (int i = 0; i < 200; i++) {
16 c = theStack.pop();
17 System.out.println("Consumer"+num+": " +c);
18
19 try {
20 Thread.sleep((int)(Math.random() * 300));
21 } catch (InterruptedException e) { }
22
23 }
24 }
25 }

14

Threads 14-51
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

SyncStack Example

Complete Code (Continued)

The following is an example of the SyncStack.java application code:

1 package mod13;
2
3 import java.util.*;
4
5 public class SyncStack {
6 private List buffer = new ArrayList(400);
7
8 public synchronized char pop() {
9 char c;
10 while (buffer.size() == 0) {
11 try {
12 this.wait();
13 } catch (InterruptedException e) {
14 // ignore it...
15 }
16 }
17 c = ((Character)buffer.remove(buffer.size()-1)).
18 charValue();
19 return c;
20 }
21
22 public synchronized void push(char c) {
23 this.notify();
24 Character charObj = new Character(c);
25 buffer.addElement(charObj);
26 }
27 }

14

14-52 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

SyncStack Example

Complete Code (Continued)

The following is an example of the output from java
mod13.SyncTest . Every time this thread code is run, the results vary.

Producer2: F
Consumer1: F
Producer2: K
Consumer2: K
Producer2: T
Producer1: N
Producer1: V
Consumer2: V
Consumer1: N
Producer2: V
Producer2: U
Consumer2: U
Consumer2: V
Producer1: F
Consumer1: F
Producer2: M
Consumer2: M
Consumer2: T

14

Threads 14-53
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Control in Java 2 SDK

The suspend and resume Methods

The methods suspend and resume have been deprecated as of
JDK 1.2. The resume method’s sole purpose is to unsuspend threads,
so without suspend , there is no longer a need for resume . suspend is
inherently dangerous from a design perspective for two reasons: It is
deadlock-prone, and it allows one thread to have direct control over
another thread’s code execution.

Assume that you have two threads, threadA and threadB. While
executing its code, threadB obtains the lock on an object and then
continues with its task. threadA’s executing code calls
threadB.suspend() , which causes threadB to stop executing its code.

14

14-54 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Control in Java 2 SDK

The suspend and resume Methods (Continued)

Deadlock can occur because threadB.suspend() does not release the
lock that threadB is holding. If the thread that called
threadB.suspend() requires the lock that threadB is holding, the two
threads are deadlocked.

Assume threadA calls threadB.suspend() . If threadA is in control
when threadB is suspended, threadB never gets the opportunity to
manipulate the shared data into a steady state. Only threadB should
determine when to stop executing its own code.

Rather than use suspend and resume , control your threads using wait
and notify mechanisms on a rendezvous object. This forces the
thread to determine when to “suspend” itself by executing a wait call.
This causes the rendezvous object’s lock to be released automatically,
and gives the thread an opportunity to stabilize any data before calling
wait .

14

Threads 14-55
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Control in Java 2 SDK

The stop Method

The situation with the stop method is similar, but with different
consequences. When a thread that holds an object lock is stopped, it
releases the lock that it holds before it terminates. This avoids the
deadlock problem discussed previously, but it introduces another
problem.

In the previous example, if the thread is stopped after the character
has been added to the stack but before the index value is incremented,
you have an inconsistent stack structure when the lock is released.

There are always certain critical operations that must be executed
atomically, and stopping a thread that is executing one of those
operations defeats the automation of the operation.

14

14-56 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Control in Java 2 SDK

The stop Method (Continued)

Another issue about stopping threads involves general thread design
strategies. You can create a thread to do one particular job and live for
the life of the entire program. In other words, you do not design your
program so that it creates and disposes of threads arbitrarily or creates
endless numbers of dialogs or socket endpoints. Each thread takes
system resources that are not infinitely available. This does not imply
that a thread must execute continuously, it means that you should use
the proper, safe mechanisms of wait and notify for thread control.

Proper Thread Control

Now that you know how to design your threads to behave well and
communicate using wait and notify calls, and not to rely on suspend
or stop , examine the following code. The run method shown ensures
that shared data are in a consistent state before execution is paused or
terminated.

✓ It has come to my attention that the following code may not in fact work as advertised. I
did not have the time to investigate these issues. Consider this a fair warning that you
might want to steer away from this topic.

14

Threads 14-57
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Control in Java 2 SDK

Proper Thread Control (Continued)

1 public class ControlledThread extends Thread {
2 static final int SUSP = 1;
3 static final int STOP = 2;
4 static final int RUN = 0;
5 private int state = RUN;
6
7 public synchronized void setState(int s) {
8 state = s;
9 if (s == RUN) {
10 notify();
11 }
12 }
13
14 public synchronized boolean checkState() {
15 while (state == SUSP) {
16 try {
17 wait();
18 } catch (InterruptedException e) {
19 // ignore
20 }
21 }
22 if (state == STOP) {
23 return false;
24 }
25 return true;
26 }
27
28 public void run() {
29 while (true) {
30 doSomething();
31
32 // Be sure shared data is in consistent state in
33 // case the thread is waited or marked for exiting
34 // from run()
35 if (!checkState()) {
36 break;
37 }
38 }
39 }
40 }

14

14-58 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Thread Control in Java 2 SDK

Proper Thread Control (Continued)

A thread that wants to suspend, resume, or stop a controlled thread
calls that thread’s setState method with the appropriate value, and
when the thread determines that it is safe to do so, it suspends (by
using the wait method) or stops (by exiting from the run method)
itself.

A more detailed discussion of this problem is beyond the scope of this
module.

14

Threads 14-59
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Multithreaded Programming

Exercise objective – In this lab you will become familiar with the
concepts of multithreading by writing two multithreaded programs,
one of which is an applet.

Preparation

To successfully complete this lab, you must understand the concepts of
multithreading as presented in this module.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod14). A listing of this directory will show
three subdirectories. These two will be found in the directories called
exercise2 and exercise3 .

Exercise 2: Use Threads in Applet Animation (Level 2)

In this exercise you will use threads to control the animation within an
applet.

Exercise 3: Use Advanced Thread Control (Level 3)

In this exercise you will use wait/notify and proper thread control to
create a printer manager. You will create several threads that generate
print jobs and a single print manager thread to process those jobs.

14

14-60 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Multithreaded Programming

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explores with the students how they might apply what they learned in this exercise to
situations at their workplace.

14

Threads 14-61
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you can

❑ Define a thread

❑ Create separate threads in a Java software program, controlling the
code and data that are used by that thread

❑ Control the execution of a thread and write platform-independent
code with threads

❑ Describe the difficulties that might arise when multiple threads
share data

❑ Use wait and notify to communicate between threads

❑ Use synchronized to protect data from corruption

❑ Explain why suspend , resume , and stop methods have been
deprecated in JDK 1.2

14

14-62 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

Do you have applications that could benefit from being
multithreaded?

15-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Advanced I/OStreams 15

Objectives

At the end of this module, you should be able to:

● Describe the main features of the java.io package

● Construct node and processing streams, and use them
appropriately

● Distinguish readers and writers from streams, and select
appropriately between them

● Use the Serialization interface to encode the state of an object

This module examines how the Java programming language uses
streams to handle byte, character, and object I/O. It also discusses
node (source and sink) streams as well as processing streams.

15

15-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following questions to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answer to
these questions. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following questions are relevant to the material
presented in this module:

● What mechanisms are in place within the Java programming
language to read and write from sources (or sinks) other than files?

● How are international character sets supported in I/O operations?

● What are the possible sources and sinks of character and byte
streams?

✓ Input can come from more places than just a GUI, and output can go to more places than
just the screen or console. Often a program needs to save its state or some data to a file,
or communicate over the network to a server. This module describes the framework of the
Java platform’s stream I/O mechanism. The framework’s flexibility is demonstrated by
showing how it is easily adapted to various I/O scenarios. This module shows how whole
objects are saved and restored, allowing them to be reinstantiated without being
reinitialized. Other handy file-related classes are also covered.

15

Advanced I/O Streams 15-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

I/O Fundamentals

A stream is a flow of data from a source to a sink. Typically, your
program will be one end of that stream and some other node (for
example, a file) will be the other end.

Sources and sinks are also called input streams and output streams,
respectively. You can read from an input stream, but you cannot write
to it. Conversely, you can write to an output stream, but you cannot
read from it.

Table 15-1 Fundamental Stream Classes

byte streams character streams

source streams InputStream Reader

sink streams OutputStream Writer

15

15-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

I/O Fundamentals

Java technology supports two types of data in streams: raw bytes or
Unicode characters. Normally, the term "stream" is used to refer to
byte streams and the terms reader and writer refer to character streams.

More specifically, character input streams are implemented by
subclasses of the Reader class and character output streams are
implemented by subclasses of the Writer class. Byte input streams are
implemented by subclasses of the InputStream class and byte output
streams are implemented by subclasses of the OutputStream class.

15

Advanced I/O Streams 15-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Byte Streams

InputStream Methods

The following three methods provide access to the data from the input
stream:

int read()
int read(byte[] buffer)
int read(byte[] buffer, int offset, int length)

The first method returns an int , which contains either a byte read
from the stream or -1, which indicates the end of file condition. The
other two methods read the stream into a byte array and return the
number of bytes read. The two int arguments in the third method
indicate a subrange in the target array that needs to be filled.

Note – For efficiency, always read data in the largest practical block.

15

15-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Byte Streams

InputStream Methods (Continued)

void close()

When you have finished with a stream, close it. If you have a “stack”
of streams, using filter streams, close the stream at the top of the stack.
This operation also closes the lower streams.

int available()

This method reports the number of bytes that are immediately
available to be read from the stream. An actual read operation
following this call might return more bytes.

skip(long n)

This method discards the specified number of bytes from the stream.

boolean markSupported()
void mark(int readlimit)
void reset()

You can use these methods to perform "push back" operations on a
stream if supported by that stream. The markSupported() method
returns true if the mark() and reset() methods are operational for
that particular stream. The mark(int) method is used to indicate that
the current point in the stream should be noted and a buffer big
enough for at least the specified argument number of bytes should be
allocated. The parameter of the mark(int) method specifies the
number of bytes that can be re-read by calling reset() . After
subsequent read() operations, calling the reset() method returns
the input stream to the point you marked. If you read past the marked
buffer, reset() has no meaning.

15

Advanced I/O Streams 15-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Byte Streams

OutputStream Methods

The following methods write to the output stream:

void write(int)
void write(byte[] buffer)
void write(byte[] buffer, int offset, int length)

As with input, always try to write data in the largest practical block.

void close()

You should close output streams when you have finished with them.
Again, if you have a stack and close the top one, this closes the rest of
the streams.

void flush()

Sometimes an output stream accumulates writes before committing
them. The flush() method allows you to force writes.

15

15-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Character Streams

Reader Methods

The following three methods provide access to the character data from
the reader:

int read()
int read(char[] cbuf)
int read(char[] cbuf, int offset, int length)

The first method returns an int , which contains either a Unicode
character read from the stream or -1, which indicates the end of file
condition. The other two methods read into a character array and
return the number of bytes read. The two int arguments in the third
method indicate a subrange in the target array that needs to be filled.

Note – Like for input streams, use the largest practical block for
efficiency.

15

Advanced I/O Streams 15-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Character Streams

Reader Methods (Continued)

void close()
boolean ready()
skip(long n)
boolean markSupported()
void mark(int readAheadLimit)
void reset()

These methods are analogous to the input stream versions.

15

15-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Character Streams

Writer Methods

The following methods write to the writer:

void write(int c)
void write(char[] cbuf)
void write(char[] cbuf, int offset, int length)
void write(String string)
void write(String string, int offset, int length)

Just like output streams, writers include the close and flush
methods.

void close()
void flush()

15

Advanced I/O Streams 15-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Node Streams

In Java 2 SDK there are three fundamental types of nodes: files,
memory (such as arrays or String objects), and pipes (a channel from
one process or thread to another; the output pipe stream of one thread
is attached to the input pipe stream of another thread). It is possible to
create new node stream classes, but it will require dealing with native
function calls to a device driver and this is non-portable.

Table 15-2 Types of Node Streams

Type Character Streams Byte Streams

File FileReader
FileWriter

FileInputStream
FileOutputStream

Memory: Array CharArrayReader
CharArrayWriter

ByteArrayInputStream
ByteArrayOutputStream

Memory: String StringReader
StringWriter

Pipe PipedReader
PipedWriter

PipedInputStream
PipedOutputStream

15

15-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Reader/Writer Example

The following example reads characters from a file named by the first
command-line argument and writes the character out to a file named
by the second command-line argument. Thus, it copies the file.

1 import java.io.*;
2
3 public class TestNodeStreams {
4 public static void main(String[] args) {
5 try {
6 FileReader input = new FileReader(args[0]);
7 FileWriter output = new FileWriter(args[1]);
8 char[] buffer = new char[128];
9 int charsRead;
10
11 // read the first buffer
12 charsRead = input.read(buffer);
13
14 while (charsRead != -1) {
15 // write the buffer out to the output file
16 output.write(buffer, 0, charsRead);
17
18 // read the next buffer
19 charsRead = input.read(buffer);
20 }
21
22 input.close();
23 output.close();
24 } catch (IOException e) {
25 e.printStackTrace();
26 }
27 }
28 }

As easy as this was, handling the buffer is tedious and error-prone. It
turns out that there are classes that handle the buffering for you and
present you with the ability to read a stream a "line at a time." It is
called a BufferedReader and is a type of a stream called a processing
stream.

15

Advanced I/O Streams 15-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Buffered Reader/Writer Example

This program performs the same function as the previous program.

1 import java.io.*;
2
3 public class TestBufferedStreams {
4 public static void main(String[] args) {
5 try {
6 FileReader input = new FileReader(args[0]);
7 BufferedReader bufInput = new BufferedReader(input);
8 FileWriter output = new FileWriter(args[1]);
9 BufferedWriter bufOutput = new BufferedWriter(output);
10 String line;
11
12 // read the first line
13 line = bufInput.readLine();
14
15 while (line != null) {
16 // write the line out to the output file
17 bufOutput.write(line, 0, line.length());
18 bufOutput.newLine();
19
20 // read the next line
21 line = bufInput.readLine();
22 }
23
24 bufInput.close();
25 bufOutput.close();
26 } catch (IOException e) {
27 e.printStackTrace();
28 }
29 }
30 }

The basic flow of this program is the same as before. Instead of
reading a buffer, this program reads a “line at a time” using the line
variable to hold the String returned by the readLine method (lines
13 and 21). This provides greater efficiency. Line 7 chains the file
reader object within a buffered reader stream. You manipulate the
outer-most stream in the chain (bufInput) which in-turn manipulates
the inner-most stream (input).

15

15-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

I/O Stream Chaining

A program rarely uses a single stream object. Instead, it chains a series
of streams together to process the data. Figure 15-1 demonstrates an
example input stream; in this case, a file stream is "buffered" for
efficiency and then converted into data (Java primitives) items.

Figure 15-1 An Input Stream Chain Example

Figure 15-2 demonstrates an example output stream; in this case, data
is written, then buffered, and finally written to a file.

Figure 15-2 An Output Stream Chain Example

DataSource Program
FileInputStream

BufferedInputStream
DataInputStream

DataSinkProgram

FileOutputStream
BufferedOutputStream

DataOutputStream

15

Advanced I/O Streams 15-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Processing Streams

A processing stream performs some sort of conversion on another
stream. Processing streams are also known as filter streams. A filter
input stream is created with a connection to an existing input stream.
This is done so that when you try to read from the filter input stream
object, it supplies you with characters that originally came from the
other input stream object. This allows you to convert the raw data into
a more usable form for your application. It is very easy to create new
processing streams. This is discussed in the next section.

Table 15-3 Types of Processing Streams

Note – Filter Xxx are abstract classes and can not be used directly.
You may subclass them to implement your own processing streams.

Type Character Streams Byte Streams

Buffering BufferedReader
BufferedWriter

BufferedInputStream
BufferedOutputStream

Filtering FilterReader
FilterWriter

FilterInputStream
FilterOutputStream

Converting between
bytes and character

InputStreamReader
OuptutStreamWriter

Object serialization ObjectInputStream
ObjectOutputStream

Data conversion DataInputStream
DataOutputStream

Counting LineNumberReader LineNumberInputStream

Peeking ahead PushbackReader PushbackInputStream

Printing PrintWriter PrintStream

15

15-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Processing Streams as Decorators

A Decorator is a design pattern. A decorator is an object that wraps
around another object. Some method calls to the first object are passed
directly to the enclosed object (this is called delegation), whereas other
method calls are handled by the first object. This is used to a great
extend in the Java technology I/O package.

For example, a buffered reader can be used to decorate a file reader.
The FileReader class only implements low-level read methods, such
as read(char[] buffer) . But the BufferedReader class implements
the more high-level read method readLine , which returns a String
object for each text line in the file. If all you need is to read a line at a
time, the buffered reader object handles all of the low-level buffering
for you.

15

Advanced I/O Streams 15-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Processing Streams as Decorators

By extending the Filter Xxx abstract classes you build your own
processing streams. Suppose that you built your own database using
files that store raw data (ints, floats, and so on) with one "record" per
line in the file. You could build a pair of classes: RecordInputStream
and RecordOutputStream to handle the I/O operations at a high-
level; that is, reading and writing records.

Figure 15-3 shows a UML diagram of the I/O stream classes that you
would write to implement this functionality. Notice that the
constructor takes a "data stream" as a parameter. This is the object
decorated by the "record stream" object.

Figure 15-3 I/O Streams for Dealing With Database Record Objects

InputStream

RecordInputStream

+RecordInputStream(DataInputStream)

+readRecord() : Record

OutputStream

RecordOutputStream

+RecordOutputStream(DataOutputStream)

+writeRecord(record : Record)

FilterOutputStream

#FilterOutputStream(OutputStream)

#out : OutputStream

FilterInputStream

#FilterInputStream(InputStream)

#in : InputStream

15

15-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Byte Stream Classes

Figure 15-4 and Figure 15-5 illustrate the hierarchy of input and output
byte stream classes in the java.io package. Some of the more
common ones are described in the following sections.

Figure 15-4 The Complete InputStream Class Hierarchy

Figure 15-5 The Complete OutputStream Class Hierarchy

InputStream

FileInputStream

ObjectInputStream

PipedInputStream

StringBufferInputStream

FilterInputStream

ByteArrayInputStream

DataInputStream

PushbackInputStream

BufferedInputStream

LineNumberInputStream

SequenceInputStream

OutputStream

FileOutputStream

ObjectOutputStream

FilterOutputStream

ByteArrayOutputStream

DataOutputStream

PrintStreamPrintStream

BufferedOutputStream

PipedOutputStream

15

Advanced I/O Streams 15-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Byte Stream Classes

FileInputStream and FileOutputStream

These classes are node streams and, as the name suggests, they use
disk files. The constructors for these classes allow you to specify the
path of the file to which they are connected. To construct a
FileInputStream , the associated file must exist and be readable. If
you construct a FileOutputStream, the output file is overwritten if
it already exists.

FileInputStream infile =
 new FileInputStream("myfile.dat");

FileOutputStream outfile =
 new FileOutputStream("results.dat");

BufferedInputStream and BufferedOutputStream

These are filter streams that should be used to increase the efficiency of
I/O operations.

PipedInputStream and PipedOutputStream

You use piped streams for communicating between threads. A
PipedInputStream object in one thread receives its input from a
complementary PipedOutputStream object in another thread. The
piped streams must have both an input side and an output side to be
useful.

15

15-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Byte Stream Classes

DataInputStream and DataOutputStream

These filter streams allow reading and writing of Java primitive types
and some special formats using streams. A number of methods are
provided for the different primitives. For example:

DataInputStream Methods

byte readByte()
long readLong()
double readDouble()

DataOutputStream Methods

void writeByte(byte)
void writeLong(long)
void writeDouble(double)

Notice that the methods of DataInputStream are paired with the
methods of DataOutputStream .

These streams have methods for reading and writing strings, but these
methods should not be used. They have been deprecated and replaced
by readers and writers that are discussed later.

15

Advanced I/O Streams 15-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Character Stream Classes

Figure 15-6 and Figure 15-7 illustrate the hierarchy of Reader and
Writer character stream classes in the java.io package. Some of the
more common ones are described in the following sections.

Figure 15-6 The Complete Reader Class Hierarchy

Figure 15-7 The Complete Writer Class Hierarchy

Reader

BufferedReader

CharArrayReader

PipedReader

FilterReader

StringReader

FileReaderInputStreamReader

LineNumberReader

PushbackReader

Writer

BufferedWriter

CharArrayWriter

PrintWriter

PipedWriter

FilterWriter

StringWriter

FileWriterOutputStreamWriter

15

15-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Character Stream Classes

InputStreamReader and InputStreamWriter

The most important versions of readers and writers are
InputStreamReader and OutputStreamWriter . These classes are
used to interface between byte streams and character readers and
writers.

When you construct an InputStreamReader or OutputStreamWriter ,
conversion rules are defined to change between 16-bit Unicode and
other platform specific representations.

Byte and Character Conversions

By default, if you construct a reader or writer connected to a stream,
the conversion rules change between bytes using the default platform
character encoding and Unicode. In English-speaking countries, the
byte encoding used is International Organization for Standardization
(ISO) 8859-1.

Specify an alternative byte encoding by using one of the supported
encoding forms. You can find a list of the supported encoding forms in
the documentation found at
jdk1.2/docs/guide/internet/encoding.doc.html .

Using this conversion scheme, Java technology uses the full flexibility
of the local platform character set while still retaining platform
independence through the internal use of Unicode.

Using Other Character Encoding

If you need to read input from a character encoding that is not your
local one (for example, reading from a network connection with a
different type of machine), you can construct the InputStreamReader
with an explicit character encoding, such as:

ir = new InputStreamReader(System.in, "ISO8859_1")

Note – If you are reading characters from a network connection, use
this form. If you do not, your program will always attempt to convert
the characters it reads as if they were in the local representation, which
is probably not correct. ISO 8859_1 is the Latin-1 encoding scheme that
maps onto ASCII.

15

Advanced I/O Streams 15-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Character Stream Classes

FileReader and FileWriter

These classes are node streams that are the Unicode character
analogues of the FileInputStream and FileOutputStream classes.

BufferedReader and BufferedWriter

These are filter character streams that should be used to increase the
efficiency of I/O operations.

StringReader and StringWriter

These are node character streams that "read" from or "write" to Java
technology String objects.

Suppose you wrote a set of report classes whose methods accept a
Writer parameter (the destination of the report text). Since the
method makes calls against a generic interface, the program can
choose to pass in a FileWriter object or a StringWriter object; the
method code doesn’t care. You would use the former object to write
the report to a file. You might use the latter object to write the report
into memory within a String to be displayed within a GUI text area.
In either case, the report writing code remains the same.

PipedReader and PipedWriter

You use piped streams for communicating between threads. A
PipedInputStream object in one thread receives its input from a
complementary PipedOutputStream object in another thread. The
piped streams must have both an input side and an output side to be
useful.

15

15-24 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

URL Input Streams

In addition to basic file access, Java technology provides you with the
ability to use uniform resource locators (URLs) as a means of accessing
objects across a network. You implicitly use a URLobject when
accessing sounds and images using the getDocumentBase() method
for applets.

1 String imageFile = new String ("images/Duke/T1.gif");
2 images[0] = getImage(getDocumentBase(), imageFile);

However, you can provide a direct URL as follows:

1 java.net.URL imageSource;
2
3 try {
4 imageSource = new URL("http://mysite.com/~info");
5 } catch (MalformedURLException e) {}
6 images[0] = getImage(imageSource, "Duke/T1.gif");

✓ This example assumes the host mysite.com is running an httpd daemon that can handle
the request.

15

Advanced I/O Streams 15-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

URL Input Streams

Opening an Input Stream

You can open an input stream off of an appropriate URLobject by
storing a data file in or below the document base directory.

1 InputStream is = null;
2 String fileName = new String("Data/data.1-96");
3 byte buffer[] = new byte[24];
4
5 try {
6 // new URL throws a MalformedURLException
7 URL fileLocation = new URL(getDocumentBase(), fileName);
8
9 // URL.openStream() throws an IOException
10 is = fileLocation.openStream();
11 } catch (Exception e) {
12 // ignore
13 }

Now you can use it to read information, just as with a
FileInputStream object:

14 try {
15 is.read(buffer, 0, buffer.length);
16 } catch (IOException e1) {
17 // ignore
18 }

Caution – Remember that most users have their browser security set
to prevent applets from accessing files.!

15

15-26 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Random Access Files

Often you will find that you want to read data within a file without
reading the file from beginning to end. You might want to access a text
file as a database, in which case you move around reading one record,
then another, and then another—each in different parts of the file. The
Java programming language provides a RandomAccessFile class for
handling this type of input or output.

Creating a Random Access File

You have two options for opening a random access file.

● With the file name:

myRAFile = new
 RandomAccessFile(String name, String mode);

15

Advanced I/O Streams 15-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Random Access Files

Creating a Random Access File (Continued)

● With a File object:

myRAFile = new RandomAccessFile(
 File file, String mode);

The mode argument determines whether you have read-only (r) or
read/write (rw) access to this file.

For example, you open a database file for updating:

RandomAccessFile myRAFile;
myRAFile = new RandomAccessFile("stock.dbf","rw");

15

15-28 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Random Access Files

Accessing Information

RandomAccessFile objects expect to read and write information in the
same manner as data input and data output objects. You have access to
all of the read() and write() operations found in the
DataInputStream and DataOutputStream classes.

The Java programming language provides several methods to help
you move around inside the file. Use the following method to obtain
the current location of the file pointer:

long getFilePointer();

15

Advanced I/O Streams 15-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Random Access Files

Accessing Information (Continued)

Use the following method to set the file pointer to the specified
absolute position:

void seek(long pos);

The position is given as a byte-offset from the beginning of the file.
Position 0 marks the beginning of the file.

Use the following method to obtain the length of the file:

long length();

The position at length() marks the end of the file.

Appending Information

Use random access files to accomplish an appending mode for file
output:

myRAFile = new RandomAccessFile("java.log","rw");
myRAFile.seek(myRAFile.length());
// Any subsequent writes will be appended to the file

15

15-30 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Serialization

A new feature of the Java programming language since JDK 1.1 is the
addition of the java.io.Serializable interface. This required
additional changes to the JVM to support the ability to read or write a
Java technology object to a stream.

Saving an object to some type of permanent storage is called
persistence. An object is said to be persistent capable when you can store
that object on a disk or tape or send it to another machine to be stored
in memory or on disk.

The java.io.Serializable interface has no methods and only
serves as a "marker" that indicates that the class that implements the
interface can be considered for serialization. Objects from classes that
do not implement Serializable cannot save or restore their state.

✓ The implementation of a class that implements Externalizable is beyond the scope of this
discussion. Also excluded is how you define readObject and writeObject in a
Serializable class’s implementation.

15

Advanced I/O Streams 15-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Serialization

Object Graphs

When an object is serialized, only the data of the object are preserved;
methods and constructors are not part of the serialized stream. When a
data variable is an object, the data members of that object are also
serialized if that object’s class is serializable. The tree, or structure of
an object’s data, including these sub-objects, constitutes the object
graph.

Some object classes are not serializable because the data they represent
are constantly changing; for example, java.io.FileInputStream and
java.lang.Thread . If a serializable object contains a reference to a
non-serializable element, the entire serialization operation fails and a
NotSerializableException is thrown.

If the object graph contains a non-serializable object reference, the
object can still be serialized if the reference is marked with the
transient keyword.

public class MyClass implements Serializable {
public transient Thread myThread;

 private String customerID;
 private int total;
}

The field access modifier (public , protected, default, and private)
has no effect on the data field being serialized. Data is written to the
stream in byte format and with strings represented as UTF (file system
safe universal character set transformation format) characters. The
transient keyword prevents the data from being serialized.

public class MyClass implements Serializable {
public transient Thread myThread;
private transient String customerID;
private int total;

}

15

15-32 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Writing and Reading an Object Stream

Writing

Writing and reading an object to a file stream is a simple process. The
following code fragment sends an instance of a java.util.Date
object to a file:

1 import java.io.*;
2 import java.util.Date;
3
4 public class SerializeDate {
5
6 SerializeDate() {
7 Date d = new Date ();
8
9 try {
10 FileOutputStream f =
11 new FileOutputStream ("date.ser");
12 ObjectOutputStream s =
13 new ObjectOutputStream (f);
14 s.writeObject (d);
15 s.close ();
16 } catch (IOException e) {
17 e.printStackTrace ();
18 }
19 }
20
21 public static void main (String args[]) {
22 new SerializeDate();
23 }
24 }

15

Advanced I/O Streams 15-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Writing and Reading an Object Stream

Reading

Reading the object is as simple as writing it, with one caveat—the
readObject() method returns the stream as an Object type, and it
must be cast to the appropriate class name before methods on that
class can be executed.

1 import java.io.*;
2 import java.util.Date;
3
4 public class UnSerializeDate {
5
6 UnSerializeDate () {
7 Date d = null;
8
9 try {
10 FileInputStream f =
11 new FileInputStream ("date.ser");
12 ObjectInputStream s =
13 new ObjectInputStream (f);
14 d = (Date) s.readObject ();
15 s.close ();
16 } catch (Exception e) {
17 e.printStackTrace ();
18 }
19
20 System.out.println(
21 "Unserialized Date object from date.ser");
22 System.out.println("Date: "+d);
23 }
24
25 public static void main (String args[]) {
26 new UnSerializeDate();
27 }
28 }

15

15-34 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Getting Acquainted With I/O

Exercise objective – In this lab you will become familiar with stream
I/O by writing programs which perform I/O operations.

Preparation

You should understand the basic concepts of a database and the basic
concepts of writing data to a stream.

Tasks

In a Web browser view the lab_files.html page that is at the top-
level of the SL275 directory on your computer. There will be a
summary of each exercise and a link to a page that gives a detailed
explanation of the exercise.

Go to the SL275 directory on your computer and change to the
directory for this module (mod15). A listing of this directory will show
three subdirectories: one for each of the exercises below.

Exercise 1: Implement Object Serialization (Level 1)

In this exercise you will read and write a serialized object from and to
a file.

Exercise 2: Implement the Record Processing Streams (Level 2)

In this exercise you will write the RecordInputStream and
RecordOutputStream filter stream classes based on a particular
Record class.

Exercise 3: Create a Simple Database Program (Level 3)

In this exercise you will use random access files to implement a simple
database program.

15

Advanced I/O Streams 15-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Getting Acquainted With I/O

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues,
or discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want
to go over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to
situations at their workplace.

15

15-36 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing on to the next module, check to be sure that you can

❑ Describe the main features of the java.io package

❑ Construct node and processing streams, and use them
appropriately

❑ Distinguish readers and writers from streams, and select
appropriately between them

❑ Use the Serialization interface to encode the state of an object

15

Advanced I/O Streams 15-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

Do you have applications that could benefit from creating specialized
stream and character filters?

16-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Networking 16

Objectives

At the end of this module, you should be able to:

● Develop code to set up the network connection

● Understand the TCP/IP protocol

● Use ServerSocket and Socket classes for implementing
TCP/IP clients and servers

This module discusses Java 2 SDK support for sockets and socket
programming. Socket programming is used to communicate with
other programs running on computers on the same network.

16

16-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Relevance

✓ Present the following question to stimulate the students and get them thinking about the
issues and topics presented in this module. They are not expected to know the answer to
this question. Hold discussions where students have input; otherwise, if no one can
propose answers, begin the lecture for this module.

Discussion – The following question is relevant to the material
presented in this module:

● How can a communication link between a client machine and a
server on the network be established?

✓ Networked servers are a convenient way of providing services to any client on the same
network that needs them. Sockets provide a means of network communication to make
this possible. The Java 2 SDK provides an interface to sockets through classes in the
java.net package. This module examines two kinds of socket programming offered by the
JDK, from both a server and client perspective.

16

Networking 16-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Networking

Sockets

Socket is the name given, in one particular programming model, to the
endpoints of a communication link between processes. Because of the
popularity of that particular programming model, the name socket has
been reused in other programming models, including Java technology.

When processes communicate over a network, Java technology uses its
streams model. A socket can hold two streams: one input stream and
one output stream. A process sends data to another process through
the network by writing to the output stream associated with the
socket. A process reads data written by another process by reading
from the input stream associated with the socket.

Once the network connection has been set up, using the streams
associated with that connection is similar to using any other stream.

16

16-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Networking

Setting up the Connection

To set up the connection, one machine must be running a program that
is waiting for a connection, and the other machine must try to reach
the first. This is similar to a telephone system; one party must make
the call, while the other party must be waiting by the telephone when
that call is made.

Transmission Control Protocol/Internet Protocol, or TCP/IP, is the first
type of connection protocol that is presented in this module.

Figure 16-1 Diagram of Network Connections

client.bar.com

client.baz.com

server.foo.com

2000

2000

3000

3001

16

Networking 16-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Networking With Java Technology

Addressing the Connection

When making a telephone call, you need to know the telephone
number to dial. When making a network connection, you need to
know the address or the name of the remote machine. In addition, a
network connection requires a port number that you can think of as a
telephone extension number. Once you have connected to the proper
computer, you must identify a particular purpose for the connection.
So, in the same way that you can use a particular telephone extension
number to talk to the accounts department, you can use a particular
port number to communicate with the accounting program.

16

16-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Networking With Java Technology

Port Numbers

Port numbers in TCP/IP systems are 16-bit numbers and range from
0 to 65535. In practice, port numbers below 1024 are reserved for
predefined services, and you should not use them unless you want to
communicate with one of those services (such as telnet , Simple Mail
Transport Protocol (SMTP) mail, ftp , and so on).

Both client and server must agree in advance on which port to use. If
the port numbers used by the two parts of the system do not agree, no
communication will occur.

16

Networking 16-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Networking With Java Technology

Java Networking Model

In the Java programming language, TCP/IP socket connections are
implemented with classes in the java.net package. Figure 16-2
illustrates what occurs on the server side and the client side.

Figure 16-2 TCP/IP Socket Connections

In Figure 16-2:

● The server assigns a port number. When the client requests a
connection, the server opens the socket connection with the
accept() method.

● The client establishes a connection with host on port port# .

● Both the client and server communicate by using an InputStream
and an OutputStream .

Server

ServerSocket (port #)

OutputStream

InputStream

Socket.close()

Client

Socket (host, port#)

OutputStream

InputStream

Socket.close()

Register with
this service

Wait for a
connection

(Attempt to connect)Socket()

ServerSocket.accept()

16

16-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Minimal TCP/IP Server

TCP/IP server applications rely on the ServerSocket and Socket
networking classes provided by the Java programming language. The
ServerSocket class takes most of the work out of establishing a
server connection.

1 import java.net.*;
2 import java.io.*;
3
4 public class SimpleServer {
5 public static void main(String args[]) {
6 ServerSocket s;
7
8 // Register your service on port 5432
9 try {
10 s = new ServerSocket(5432);
11 } catch (IOException e) {
12 // ignore
13 }
14
15 // Run the listen/accept loop forever
16 while (true) {
17 try {
18 // Wait here and listen for a connection
19 Socket s1 = s.accept();
20
21 // Get output stream associated with the socket
22 OutputStream s1out = s1.getOutputStream();
23 DataOutputStream dos = new DataOutputStream(s1out);
24
25 // Send your string!
26 dos.writeUTF("Hello Net World!");
27
28 // Close the connection, but not the server socket
29 dos.close();
30 s1.close();
31 } catch (IOException e) {
32 // ignore
33 }
34 }
35 }
36 }

✓ If you use writeUTF , you must use readUTF on the other end of the connection.

16

Networking 16-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Minimal TCP/IP Client

The client side of a TCP/IP application relies on the Socket class.
Again, much of the work involved in establishing connections has
been done by the Socket class. The client attaches to the server
presented on the previous page and prints everything sent by the
server to the console.

1 import java.net.*;
2 import java.io.*;
3
4 public class SimpleClient {
5 public static void main(String args[]) {
6 try {
7 // Open your connection to a server, at port 5432
8 // localhost used here
9 Socket s1 = new Socket("127.0.0.1", 5432);
10
11 // Get an input stream from the socket
12 InputStream is = s1.getInputStream();
13 // Decorate it with a "data" input stream
14 DataInputStream dis = new DataInputStream(is);
15
16 // Read the input and print it to the screen
17 System.out.println(dis.readUTF());
18
19 // When done, just close the steam and connection
20 dis.close();
21 s1.close();
22 } catch (ConnectException connExc) {
23 System.err.println("Could not connect to the server.");
24 } catch (IOException e) {
25 // ignore
26 }
27 }
28 }

✓ Currently, the Microsoft Windows Socket close method does not correctly send an EOF
(end of file) message to the connected socket. A temporary fix is to send an ending close
message such as "bye."

Note – UTF stands for UCS Transformation Format. UCS stands for
Universal Character Set. UTF is a string format that is platform-
independent. If you exchange strings across a network, you should
always use UTF.

16

16-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Socket Programming

Exercise objective – Gain experience using sockets by implementing a client
and server which communicate using sockets.

Preparation

To successfully complete this lab, you must have a clear understanding of
HTML and the network.

Tasks

In a Web browser view the lab_files.html page that is at the top-level of
the SL275 directory on your computer. There will be a summary of each
exercise and a link to a page that gives a detailed explanation of the exercise.

Go to the SL275 directory on your computer and change to the directory for
this module (mod16). A listing of this directory will show two subdirectories:
exercise1 and exercise2 .

Exercise 1: Finish the ChatClient (Level 2)

In this exercise you will finish the "chat room" client program. Your client will
connect to a "chat server" so that you may chat with other students in the
class.

Exercise 2: Create a File Server (Level 3)

In this exercise you will have hands-on experience in the creation of a simple
file server and client.

16

Networking 16-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Exercise: Using Socket Programming

Exercise Summary

Discussion – Take a few minutes to discuss what experiences, issues, or
discoveries you had during the lab exercises.

✓ If you do not have time to spend on discussion, just highlight the key concepts students
should have learned from the lab exercise.

● Experiences

✓ Ask students what their overall experiences with this exercise have been. You might want to go
over any trouble spots or especially confusing areas at this time.

● Interpretations

✓ Ask students to interpret what they observed during any aspects of this exercise.

● Conclusions

✓ Have students articulate any conclusions they have reached as a result of this exercise
experience.

● Applications

✓ Explore with the students how they might apply what they learned in this exercise to situations
at their workplace.

16

16-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

Before continuing, check to be sure that you can:

❑ Develop code to set up the network connection

❑ Understand the TCP/IP protocol

❑ Use ServerSocket and Socket classes for implementing
TCP/IP clients and servers

16

Networking 16-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Think Beyond

How can you create a distributed object system using object
serialization and these network protocols? Have you heard of Remote
Method Invocation (RMI)?

There are several advanced Java platform topics, many of which are
addressed in other Sun Educational Services courses. Be sure and
check out the JavaSoft™ Web site (http://www.javasoft.com .) as
well.

A-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

ElementsofAdvanced Java
Programming A

Objectives

At the end of this appendix, you should be able to:

● Understand two-tier and three-tier architectures for distributed
computing

● Understand the role of the Java programming language as a front
end for database applications

● Use the JDBC API

● Understand data interchange methodologies using object brokers

● Explain the JavaBeans Component Model

A

A-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Introduction to Two- and Three-Tier Architectures

Client-server computing involves two or more computers sharing tasks
related to a complete application. Ideally, each computer is performing
logic appropriate to its design and stated function.

The most widely used form of client-server implementation is a two-
tier client-server. This involves a front-end client application
communicating with a back-end database engine running on a
separate computer. Client programs send SQL statements to the
database server. The server returns the appropriate results, and the
client is responsible for handling the data.

The basic two-tier client-server model is used for applications that can
run with many popular databases including Oracle, Sybase, and
Informix.

A major performance penalty is paid in two-tier client-server. The
client software ends up larger and more complex because most of the
logic is handled there. The use of server side logic is limited to
database operations. The client here is referred to as thick client.

Thick clients tend to produce frequent network traffic for remote
database access. This works well for Intranet and local area networks
(LAN)-based network topologies but produces a large footprint on the
desktop in terms of disk and memory requirements. Also, not all back-
end database servers are the same in terms of server logic offered, and
all of them have their own API sets that programmers must use to
optimize and scale performance. Three-tier client-server, which is
described next, takes care of scalability, performance, and logic
partitioning in a more efficient manner.

A

Elements of Advanced Java Programming A-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Three-Tier Architecture

Three-tier is the most advanced type of client-server software
architecture. A three-tier client-server demands a much steeper
development curve initially, especially when you have to support a
number of different platforms and network environments. The
payback comes in the form of reduced network traffic, excellent
Internet and intranet performance, and more control over system
expansion and growth.

Three -Tier Client-Server Definition

The three components or tiers of a three-tier client-server environment
are presentation, business logic or functionality, and data. They are
separated such that the software for any one of the tiers can be
replaced by a different implementation without affecting the other
tiers. For example, if you wanted to replace a character-oriented screen
(or screens) with a GUI (the presentation tier), you would write the
GUI using an established API or interface to access the same
functionality programs in the character-oriented screens. The business
logic offers functionality in terms of defining all of the business rules
through which the data can be manipulated. Changes to business
policies can affect this layer without having any impact on the actual
databases. The third tier or data tier, includes existing systems,
applications, and data that has been encapsulated to take advantage of
this architecture with minimal transitional programming effort.

Data
Business Logic/

Functionality
Presentation

A

A-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Database Frontend

The Java programming language offers wide benefits to software
engineers creating front-end applications for database-oriented
systems. With its "Write Once, Run Anywhere"™ language feature, the
Java programming language offers immediate advantages in terms of
its deployment on a wide range of hardware and operating systems.
Programmers do not have to write platform-specific code for front-end
applications, even in a multi-platform environment.

With Java technology’s rich set of supported front-end development
classes, you can interact with databases through the JDBC API. The
JDBC API provides a connectivity to back-end databases that can be
queried with results being handled by the front-end.

In a two-tier model, the database resides on a database server. The
client executes a front-end application that opens a socket for
communication over the network. The socket provides a
communication path between the client application and the back-end
server. In the following illustration, client programs send SQL
database query requests to the database server. The server returns the
results to the client, which formats the results for presentation.

Frequently used mechanisms for data manipulations are often
embedded as "stored procedures." Triggers automatically execute
stored procedures when certain conditions are activated during the
course of manipulations on the database. The primary drawback of
this model is that all business rules are implemented in the client
application, creating large client-side runtimes and increased rewriting
of the client’s code.

Application
front-end
(client)

Database server
(back-end)

Database

SQL request

SQL reply

A

Elements of Advanced Java Programming A-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Database Frontend

In a three-tier model, the presentation and control logic is embedded
in the client (front-end) tier. It communicates with an intermediate
server that provides a layer of abstraction from the back-end
applications. This middle tier manages the business rules that
manipulate the data per the governing conditions of the applications.
It can also accept connections from several clients to one or more
database servers on a variety of communications protocols. The
middle tier provides a database-independent interface for applications
and makes the front-end robust.

Application
(front-end) (middle-tier)

Business Logic

Database

Database server

(back-end)

SQL query

SQL reply

A

A-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Introduction to the JDBC API

The ability to create robust, platform-independent applications and
Web-based applets prompted developers to create front-end
connectivity solutions. JavaSoft worked with database and database-
tool vendors to create a database management system (DBMS)-
independent mechanism that would enable developers to write client-
side applications that worked with all databases. This effort resulted in
the Java Database Connectivity Application Programming Interface (JDBC
API).

JDBC, An Overview

The JDBC provides a standard interface for accessing a relational
database. Modeled after the open database connectivity (ODBC)
specification, the JDBC package contains a set of classes and methods
for issuing SQL statements, table updates, and calls to stored
procedures.

✓ Choosing ODBC was a pragmatic choice because it is a widely accepted and implemented
standard for SQL database access. Virtually all databases support ODBC.

As shown in the following figure, a Java programming language front-
end application uses the JDBC API to interact with the JDBC Driver
Manager. The JDBC Driver Manager uses the JDBC Driver API to load
the appropriate JDBC driver. JDBC drivers, which are available from
different database vendors, communicate with the underlying DBMS.

Java application

JDBC Driver
Manager

 JDBC API

JDBC Driver API

JDBC Driver
Protocol Handler
Type n

DBMS Databases

A

Elements of Advanced Java Programming A-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Introduction to the JDBC API

JDBC Drivers

Java applications use the JDBC API to connect with a database through
a database driver. Most database engines have different types of JDBC
drivers associated with them. JavaSoft has defined four types of
drivers. For more details refer to
http://java.sun.com/products/jdbc/jdbc.drivers.html

The JDBC-ODBC Bridge

The JDBC–ODBC bridge is a JDBC driver that translates JDBC calls to
ODBC operations. This bridge enables all DBMS that support ODBC to
interact with Java applications.

The JDBC–ODBC bridge interface is provided as a set of the C shared
dynamic libraries. ODBC provides a client side set of libraries and a
driver specific to the client’s operating system. These ODBC calls are
made as C calls and the client must have a local copy of the ODBC
driver and associated client-side libraries. This places a restriction on
its usage in Web-based applications.

Application

JDBC Driver Manager

JDBC–ODBC Bridge

ODBC Driver Manager

ODBC Driver Libraries

A

A-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Distributed Computing

There are Java technologies available for creating distributed
computing environments. Two popular technologies are the remote
method invocation (RMI) and the common object request broker architecture
(CORBA). RMI is analogous to the remote procedure call (RPC) and is
preferred by programmers of the Java programming language.
CORBA provides flexibility in heterogeneous development
environments.

✓ For advanced coverage in distributed programming, recommend the SL-301 course.

The RMI feature enables a program running on a client computer to
make method calls on an object located on a remote server machine. It
gives a programmer the ability to distribute computing across a
networked environment. Object-oriented design requires that every
task be executed by the object most appropriate to that task. RMI takes
this concept one step further by allowing a task to be performed on the
machine most appropriate to the task. RMI defines a set of remote
interfaces that you can use to create remote objects. A client can invoke
methods of a remote object with the same syntax that it uses to invoke
methods on a local object. The RMI API provides classes that handle
all of the underlying communication and parameter referencing
requirements of accessing remote methods.

With all of the distributed computing architectures, an application
process or object server (daemon) advertises itself to the world by
registering with a naming service on the local machine (node). In the
case of RMI, a naming service daemon called the RMI registry runs
over an RMI port that by default listens over IP port 1099 on that host.
The RMI registry contains an internal table of remote object references.
For each remote object, the table contains a registry name and a
reference to that object. You can store multiple instances for the same
object by instantiating and binding it multiple times to the registry,
using different names.

A

Elements of Advanced Java Programming A-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

RMI

When an RMI client binds a remote object through the registry, it
receives a local reference to the remote instantiated object through its
interface and communicates with the object through that reference.
Local references to the same remote object can exist on multiple clients;
any variables and methods contained within the remote object are
shared.

The applet begins by importing the appropriate RMI packages and
creating a reference to the remote object. Once the applet establishes
this link, it can call the remote object's methods as if they were locally
available to the applet.

A

A-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

RMI

RMI Architecture

The RMI architecture provides three layers: Transport layers, Remote
Reference, and Stubs/Skeleton.

The Transport layer creates and maintains physical connections
between the client and server. It handles the data stream passing
through the Remote/Reference layers (RRLs) on the client and server
side.

The Remote Reference layer provides an independent reference
protocol for establishing a virtual network between the client and
server. It establishes interfaces to the lower Transport layer and the
upper Stub/Skeleton layer.

A Stub is a client-side proxy representing the remote object. The client
interacts with the Stub through interfaces. The Stub appears as a local
object to the client. The Skeleton on the server side acts as an interface
between the RRL and the object implemented on the server side.

RMI Client

Stubs

Remote
Reference layer

Transport layer

RMI Server

Skeleton

Remote
Reference layer

Transport layer

connection

Virtual

Network

connection

Application Application

A

Elements of Advanced Java Programming A-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

RMI

Creating an RMI Application

This section guides you through the steps for creating, compiling and
running an RMI application. The following steps illustrate the process:

● Define interfaces for remote classes

● Create and compile implementation classes for the remote classes

● Create stub and skeleton classes using the rmic command

● Create and compile the server application

● Start the RMI Registry and the server application

● Create and compile a client program to access the remote objects

● Test the client

A

A-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

CORBA

CORBA is a specification that defines how distributed objects can
interoperate. The CORBA specification is controlled by the Object
Management Group (OMG), an open consortium of more than 700
companies that work together to define open standards for distributed
computing. For more details refer to the following URL:

http://www.omg.org

You can write CORBA objects in any programming language,
including C and C++. These objects can also exist on any platform,
including the Solaris Operating Environment, Microsoft Windows,
openVMS, Digital UNIX, HP-UX, and many others. This means a Java
application running on a Microsoft Windows platform can
dynamically load and use C++ objects stored on the Internet by using
a UNIX Web server.

Language independence is possible using the construction of
interfaces to objects using the Interface Definition Language (IDL). IDL
allows all CORBA objects to be described in the same manner; the only
requirement is a "bridge" between the native language (C/C++,
COBOL, Java) and IDL.

At the core of CORBA is the object resource broker (ORB). The ORB is the
principal component for the transmission of information between the
client and the server of the CORBA application. The ORB manages
marshalling requests, establishes a connection to the server, sends the
data, and executes the requests on the server side. The same process
occurs when the server wants to return the results of the operation.
ORBs from different vendors communicate over TCP/IP using the
Internet Inter ORB Protocol (IIOP), which is a part of the CORBA 2.0
standard.

A

Elements of Advanced Java Programming A-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The Java IDL

Java IDL adds CORBA capability to the Java programming language,
providing standards-based interoperability and connectivity. Java IDL
enables distributed Java Web applications to transparently invoke
operations on remote network services, using the industry standard
IDL and IIOP.

Java IDL is not an implementation of OMG’s IDL. It is, in fact, a CORBA
ORB that uses IDL to define interfaces. The idltojava compiler
generates portable client stubs and server skeletons. The CORBA client
interacts with another object running on a remote server by accessing a
reference object through its naming service. Like the RMI Registry, the
naming service is an application that runs as a background process on
a remote server. It holds a table of named services and remote object
references used to resolve client requests.

The steps involved in setting up a CORBA object can be summarized
as follows:

1. Create the object’s interface using the Interface Definition
Language (IDL).

2. Convert the interface into stub and skeleton objects using the
javatoidl compiler.

3. Implement the skeleton object, creating the CORBA server object.

4. Compile and execute the server object, binding it to the naming
service.

5. Create and compile a client object, which invokes the methods
within the server object.

6. Execute the client object, accessing the server object through the
CORBA naming service.

A

A-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

RMI Compared With CORBA

RMI’s biggest advantage stems from the fact that it was designed to be
a secure solution. This means that building RMI applications is simple,
and all remote objects have the same features as local objects. You can
also combine the best of JDBC and RMI for a multi-tier solution.

CORBA benefits from the fact that it is a language-independent
solution, which adds significant complexity to the development cycle
and precludes garbage collection features. For a database application
developer, CORBA provides the ultimate flexibility in a heterogeneous
environment. The server could be developed in C or C++, and the
client could be a Java applet.

A

Elements of Advanced Java Programming A-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The JavaBeans Component Model

JavaBeans is an integration technology, a component framework that
allows reusable component objects (called Beans) to communicate with
one another and with the framework.

A Java Bean is an independent and reusable software component that
you can manipulate visually in a builder tool. Beans can be visible
objects, such as AWT components, or invisible objects, such as queues
and stacks. A builder or integration tool manipulates Beans to create
applets and applications. The component model specified by the
JavBeans 1.00-A specification defines five major services:

● Introspection

This process exposes the properties, methods, and events that a
Java Bean component supports. It is used at runtime while the
Bean is being created with a visual development tool.

● Communication

This event-handling mechanism creates an event that serves as a
message to other components.

● Persistence

Persistence is a means of storing the state of a component. The
simplest way to support persistence is to take advantage of Java
object serialization, but it is up to the individual browsers or the
applications that use the Bean to actually save the state of the
Bean.

● Properties

Properties are attributes of a Bean that are referenced by name.
These properties are usually read and written by calling methods
on the Bean created specifically for that purpose. Some property
types affect neighboring Beans as well as the one in which the
property originates.

● Customization

One of the primary characteristics of a Bean is its reusability. The
Beans framework provides several ways of customizing existing
Beans into new ones.

A

A-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The JavaBeans Component Model

Bean Architecture

A Bean is represented by an interface that is seen by the users. The
environment must connect to this interface, if it wants to interact with
this Bean. Beans consist of three general-purpose interfaces: Events,
Properties, and Methods. Because Beans rely on their state, they must
be persistent over time.

Events

Bean events are the mechanism for sending asynchronous messages
between Beans, and between Beans and containers. A Bean uses an
event to notify another Bean to take an action or to inform the Bean
that a state change has occurred. An event allows your Beans to
communicate when something interesting happens; to do this, they
make use of the event model introduced in JDK 1.1. The event model
used in Java 2 SDK is the same event model that was introduced in
JDK 1.1. There are three parts to this communication: event object,
event listener, and event source.

JavaBeans communicate primarily using event listener interfaces that
extend EventListener .

Bean developers can design their own event types and event listener
interfaces and make their Beans act as a source by implementing the
addXXXListener(EventObject e) and
remove XXXListener(EventObject e) methods, where XXX is the
name of the event type. Then, the developers can make other Beans act
as event targets by implementing the XXXListener interface. The
sourceBean and the targetBean are brought together by calling
sourceBean.add XXXListener(targetBean) .

A

Elements of Advanced Java Programming A-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The JavaBeans Component Model

Bean Architecture (Continued)

Properties

Properties define the characteristics of the Bean. They can be changed
at runtime through their get and set methods.

You can use properties to send two-way synchronous communications
between Beans. Beans also support asynchronous property changes
between Beans using special event communication.

Methods

Methods are operations through which you can interact with a Bean.
Beans receive notification of events by having the appropriate event
source method call them. Some methods are special and deal with
properties and events. These methods must follow special naming
conventions outlined in the Beans specification. Other methods might
be unrelated to an event or property. All public methods of a Bean are
accessible to the Beans framework and can be used to connect a Bean
to other Beans.

A

A-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The JavaBeans Component Model

Bean Introspection

The JavaBean introspection process exposes the properties, methods,
and events of a Bean. Bean classes are assumed to have properties if
there are methods that either set or get a property type.

The BeanInfo interface, provided by the Java Beans API, enables
Bean designers to expose properties, events, methods, and any global
information about a Bean. The BeanInfo interface provides a series of
methods to access Bean information, but a Bean developer can also
include private description files that the BeanInfo class uses to define
Bean information. By default, a BeanInfo object is created when
introspection is run on the Bean (Figure A-1).

Figure A-1 A Sample Bean Interaction

Container A Container B

Bean 1

Bean 2

Bean 3

Bean 4

Bean 5

Bean 6

A

Elements of Advanced Java Programming A-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The JavaBeans Component Model

A Sample Bean Interaction

In Figure A-1, Container A and Container B contain six Beans. A Bean
can interact with other Beans that are present in the same container
and with Beans that are in a separate container. In this example, Bean 1
interacts with Bean 4. It does not communicate with Bean 2 and
Bean 3, which reside in the same container. This illustrates the point
that a Bean can communicate with any other Bean and is not restricted
to communicating with a Bean in the same container. However, Bean 4
communicates with Bean 5, which resides in the same container.
Source Bean 1 sends an event to the target Bean 4, which causes it to
listen for messages on its event listener. All other inter- and intra-
container Bean interactions can be explained in a similar manner.

The Beans Development Kit (BDK)

The BDK is a Java application developed by JavaSoft that allows Java
developers to create reusable components that use the Bean model. It
is a complete system that contains source code for all examples and
documentation. The BDK comes with a sample Bean builder and
customizer application called BeanBox. The BeanBox is a test container
that you can use to do the following:

● Resize and move Beans

● Alter Beans with property sheets

● Customize Beans with a customizer application

● Connect Beans together

● Drop Beans onto a composition window

● Save Beans through serialization

● Restore Beans

The BDK comes with a set of 12 sample Beans, which cover all of the
aspects of the Java Beans API.

✓ Recommend the SL-291 course.

A

A-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

JAR Files

JAR (Java Archive) is a platform-independent file format that
aggregates many files into one. You can bundle multiple Java applets
and their requisite components (.class files, images, and sounds) in a
JAR file and subsequently download to a browser in a single
Hypertext Transfer Protocol (HTTP) transaction, greatly improving the
download speed. The JAR format also supports compression, which
reduces the file size, further improving the download time. In
addition, the applet author can digitally sign individual entries in a
JAR file to authenticate their origin. It is fully backward-compatible
with existing applet code and can be extended.

Changing the applet tag in your HTML page to accommodate a JAR
file is easy. The JAR file on the server is identified by the ARCHIVE
parameter, which contains the directory location of the jar file relative
to the location of the HTML page. For example:

 <applet code=Animator.class
 archive="jars/animator.jar"
 width=460 height=160>
 <param name=foo value="bar">
 </applet>

A

Elements of Advanced Java Programming A-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Check Your Progress

At the end of this appendix, check to be sure that you can:

❑ Understand two-tier and three-tier architectures for distributed
computing

❑ Understand the role of the Java programming language as a front
end for database applications

❑ Use the JDBC API

❑ Understand data interchange methodologies using object brokers

❑ Explain the JavaBeans Component Model

B-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

JDK1.0GUIEventModel B

This appendix provides an overview of the event handling under
JDK 1.0.x and JDK 1.1 and provides a table that maps 1.0.x events and
corresponding methods to their 1.1 counterparts.

B

B-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Additional Resources

Additional Resources – The contents of this appendix were
obtained from the Web page “How to Convert Programs to the
1.1 AWT API.” [Online]. Available:
http://www.javasoft.com/products/JDK/
1.1/docs/guide/awt/HowToUpgrade.html .

B

JDK 1.0 GUI Event Model B-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Event Handling

Event Handling Before JDK 1.1

Before JDK 1.1, the Component handleEvent method (along with the
methods it called, such as the action method) was the center of event
handling. Only Component objects could handle events, and the
component that handled an event had to be either the component in
which the event occurred or a component above it in the component
containment hierarchy.

Event Handling in JDK 1.1

In JDK 1.1, event handling is no longer restricted to objects in the
component containment hierarchy, and the handleEvent method is no
longer the center of event handling. Instead, objects of any type can
register as event listeners. Event listeners receive notification only
about the types of events in which they have registered their interest.
You do not have to create a Component subclass to handle events.

When upgrading to the JDK 1.1 release, the easiest way to convert
event-handling code is to leave it in the same class, and make it a
listener for that type of event.

Another possibility is to centralize event-handling code in one or more
non-component listeners (adaptors or filters). This approach lets you
separate the GUI of your program from implementation details. It
requires that you modify your existing code so that the listeners can
get whatever state information they require from the components. This
approach can be worthwhile if you are trying to keep your program's
architecture clean.

B

B-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

JDK 1.0 Event Model Compared to Java 2 SDK Event Model

JDK 1.1 introduced significant changes in the way that events are
received and processed. This section compares the previous event
model (JDK 1.0) to the current event model (JDK 1.1 and Java 2 SDK).

JDK 1.0 uses a hierarchical event model, while JDK 1.1 and beyond use
a delegation event model.

Hierarchical Model (JDK 1.0)

The hierarchical event model is based on containment. Events are sent
to the component first, but then propagate up the containment
hierarchy. Events that are not handled by the component automatically
continue to propagate to the component’s container.

✓ These are containers, not the Container class. They extend the Container class.

For example, in Figure B-1, a mouse click on the Button object
(contained by a Panel on a Frame) sends an action event to the Button
first. If it is not handled by the Button , the event is then sent to the
Panel , and if it is not handled there, the event is sent to the Frame.

Figure B-1 Hierarchical Event Model

Frame

Button

Panel

Action event

B

JDK 1.0 GUI Event Model B-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

JDK 1.0 Event Model Compared to Java 2 SDK Event Model

Hierarchical Model (JDK 1.0) (Continued)

There is an obvious advantage to this model:

● It is simple and uses features of an object-oriented programming
environment; after all, Java software components extend from the
java.awt.Component class, which defines handleEvent(). To
customize event handling, you override handleEvent() .

However, there are some disadvantages:

● The event can be handled only by the component from where it
originates or by one of the containers that contains it. This
restriction violates one of the fundamental principles of object-
oriented programming: Functionality should reside in the most
appropriate class. Often the most appropriate class for handling an
event is not a member of the originating component’s containment
hierarchy.

● A large number of CPU cycles are wasted on unrelated events.
Any event unrelated or unimportant to the program would
traverse the containment hierarchy before eventually being
discarded. There is no simple way to filter events.

✓ You can throw a new event in JDK 1.0, but it requires knowledge of the superclass
hierarchy and specialized methods like postEvent .

● To handle events, you must either subclass the component that
receives the event or create a handleEvent() method at the base
container.

✓ This involves quite a bit of software.

B

B-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Converting 1.0 Event Handling to 1.1

The biggest part of converting most 1.0 AWT-using programs to the
1.1 API is converting the event-handling code. The process can be
straightforward, once you figure out which events a program handles
and which components generate the events. Searching for “Event” in a
source file lets you find the event-handling code.

Note – While you are looking at the code you should note whether
any classes exist solely for the purpose of handling events; you might
be able to eliminate such classes.

You can use Table B-1 in the conversion process to help map 1.0 events
and methods to their 1.1 counterparts.

● The first column lists each 1.0 event type, along with the name of
the method (if any) that is specific to the event.

Where no method is listed, the event is always handled by the
handleEvent method.

● The second column lists the 1.0 components that can generate the
event type.

● The third column lists the listener interface that helps you handle
the 1.1 equivalents of the listed events.

● The fourth column lists the methods in each listener interface.

B

Java Programming Language B-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. SunService April 2000

Table B-1 Event Conversion Table

1.0.x 1.1

Event/Method Generated by Interface Methods

ACTION_EVENT/action
Button
List
MenuItem
TextField

ActionListener actionPerformed(ActionEvent)

Checkbox
CheckboxMenuItem
Choice

ItemListener itemStateChanged(ItemEvent)

WINDOW_DESTROY
WINDOW_EXPOSE
WINDOW_ICONIFY
WINDOW_DEICONIFY

Dialog
Frame

WindowListener
windowClosing(WindowEvent)
windowOpened(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)

windowClosed(WindowEvent) a

windowActivated(WindowEvent) a

windowDeactivated(WindowEvent) a

WINDOW_MOVED Dialog
Frame

ComponentListener
componentMoved(ComponentEvent)
ComponentHidden(ComponentEvent) a

componentResized(ComponentEvent) a

componentShown(ComponentEvent) a

B

B-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. SunService April 2000

SCROLL_LINE_UP
SCROLL_LINE_DOWN
SCROLL_PAGE_UP
SCROLL_PAGE_DOWN
SCROLL_ABSOLUTE
SCROLL_BEGIN
SCROLL_END

Scrollbar

AdjustmentListener
(Or use the new
ScrollPane class)

adjustmentValueChanged(AdjustmentEvent)

LIST_SELECT
LIST_DESELECT

Checkbox
CheckboxMenuItem
Choice
List

ItemListener itemStateChanged(ItemEvent)

MOUSE_DRAG/mouseDrag
MOUSE_MOVE/mouseMove

Canvas
Dialog
Frame
Panel
Window

MouseMotionListener
mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

MOUSE_DOWN/mouseDown
MOUSE_UP/mouseUp
MOUSE_ENTER/mouseEnter
MOUSE_EXIT/mouseExit

Canvas
Dialog
Frame
Panel
Window

MouseListener

mousePressed(MouseEvent)
mouseReleased(MouseEvent)
moseEntered(MouseEvent)
mouseExited(MouseEvent)
mouseClicked(MouseEvent) a

Table B-1 Event Conversion Table (Continued)

1.0.x 1.1

Event/Method Generated by Interface Methods

B

Java Programming Language B-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. SunService April 2000

KEY_PRESS/keyDown
KEY_RELEASE/keyUp
KEY_ACTION/keyDown
KEY_ACTION_RELEASE/keyUp

Component KeyListener
keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent) a

GOT_FOCUS/gotFocus
LOST_FOCUS/lostFocus

Component FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

No 1.0 equivalent ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

No 1.0 equivalent TextListener textValueChanged(TextEvent)

a. No 1.0 equivalent

Table B-1 Event Conversion Table (Continued)

1.0.x 1.1

Event/Method Generated by Interface Methods

B

B-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Making a Component a Listener

Use the following general steps to convert a 1.0 component into a
1.1 listener:

1. Change the source file so that it imports the java.awt.event
package:

import java.awt.event.*

2. Use Table B-1 to determine which components generate each event
type.

For example, if you are converting event code that is in an action
method, you should look for Button , List , MenuItem , TextField ,
Checkbox , CheckboxMenuItem , and Choice objects.

3. Change the class declaration so that the class implements the
appropriate listener interfaces, as indicated in Table B-1.

For example, if you are trying to handle an action event
generated by a Button , Table B-1 informs you that you must
implement the ActionListener interface.

public class MyClass extends SomeComponent
implements ActionListener {

4. Determine where the components that generate the events are
created. Just after the code that creates each one, register this as
the appropriate type of listener. For example:

newComponentObject .addActionListener(this);

B

JDK 1.0 GUI Event Model B-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Making a Component a Listener

5. Create empty implementations of all the methods in the listener
interfaces your class must implement. Copy the event-handling
code into the appropriate methods.

For example, ActionListener has just one method,
actionPerformed . An easier way to create the new method and
copy the event-handling code to it is to change the signature of an
action method from:

public boolean action(Event event , Object arg) {

to

public void actionPerformed(ActionEvent event) {

6. Modify the event-handling code as follows:

a. Delete all return statements.

b. Change references from event .target to
event .getSource() .

c. Delete any code that unnecessarily tests for the component
from which the event came. (Now that events are forwarded
only if the generating component has a listener, you do not
have to worry about receiving events from an unwanted
component.)

d. Perform any other modifications required to make the
program compile cleanly and execute correctly.

C-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

TheAWTComponentLibrary C

Features of the AWT

The AWT provides a wide variety of standard features. This appendix
introduces many of the components that are available to you, and
outlines any particular anomalies about which you might need to
know. You should be aware of the full set of GUI components, so that
you can choose the appropriate ones when building your own
interfaces.

C

C-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Button

You have already become familiar with the Button component. It
provides a basic “push to activate” user interface component. It can be
constructed with a text label that informs the user of its use.

1 f = new Frame("Sample Button");
2 b = new Button("Sample");
3 b.addActionListener(this);
4 f.add(b);

Figure C-1 Button Component

The actionPerformed() method of any class implementing the
ActionListener interface, which is registered as a listener, is called
when the button is “pressed” by a mouse click.

1 public void actionPerformed(ActionEvent ae) {
2 System.out.println("Button press received.");
3 System.out.println("Button's action command is: " +
4 ae.getActionCommand());
5 }

The getActionCommand() method of the ActionEvent that is issued
when the button is pressed returns the label string by default. The
action command or label is changed by using the button’s
setActionCommand() method.

1 b = new Button("Sample");
2 b.setActionCommand("Action Command Was Here!");
3 b.addActionListener(this);
4 f.add(b);

Note – You can find the complete source for SampleButton and
ActionCommandButton in the examples directory.

C

The AWT Component Library C-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Checkbox

The Checkbox component provides a simple “on/off” input device
with a text label beside it.

1 f = new Frame("Sample Checkbox");
2 one = new Checkbox("One", true);
3 two = new Checkbox("Two", false);
4 three = new Checkbox("Three", false);
5
6 one.addItemListener(this);
7 two.addItemListener(this);
8 three.addItemListener(this);
9
10 f.setLayout(new FlowLayout());
11 f.add(one);
12 f.add(two);
13 f.add(three);

Figure C-2 Checkbox Component

Selection or deselection of a checkbox is sent to the ItemListener
interface. The ItemEvent that is passed contains the method
getStatechange() , which returns ItemEvent.DESELECTED or
ItemEvent.SELECTED , as appropriate. The method getItem() returns
the affected checkbox as a String object that represents its label.

1 public void itemStateChanged(ItemEvent ev) {
2 String state = "deselected";
3 if (ev.getStateChange() == ItemEvent.SELECTED) {
4 state = "selected";
5 }
6 System.out.println (ev.getItem() + " " + state);
7 }

C

C-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Checkbox Group – Radio Buttons

CheckboxGroup provides the means to group multiple Checkbox
items into a mutual exclusion set, so that only one Checkbox in the set
has the value true at any time. The Checkbox with the value true is
the currently selected Checkbox . You can create each Checkbox of a
group using a constructor that takes an additional argument, a
CheckboxGroup . It is this CheckboxGroup object that connects the
Checkbox items together into a set. The appearance of each Checkbox
item added to the group is changed to a “radio button.”

1 f = new Frame("CheckBoxGroup");
2 cbg = new CheckboxGroup();
3 one = new Checkbox("One", cbg, false);
4 two = new Checkbox("Two", cbg, false);
5 three = new Checkbox("Three", cbg, true);
6
7 f.setLayout(new FlowLayout());
8
9 one.addItemListener(this);
10 two.addItemListener(this);
11 three.addItemListener(this);
12
13 f.add(one);
14 f.add(two);
15 f.add(three);

Figure C-3 CheckboxGroup Component

C

The AWT Component Library C-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Choice

The Choice component provides a simple “select one from this list”
type of input. For example:

1 f = new Frame("Sample Choice");
2 choice = new Choice();
3 choice.addItem("First");
4 choice.addItem("Second");
5 choice.addItem("Third");
6 choice.addItemListener(this);
7 f.add(choice, BorderLayout.CENTER);

Figure C-4 Choice Component

When you click on the Choice , it displays a list of items that have been
added to it. The items added are String objects.

Figure C-5 Choice With Items

The ItemListener interface is used to observe changes in the Choice .
The details are the same as those for the Checkbox .

C

C-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Canvas

A Canvas provides a blank (background colored) space. It has a
preferred size of zero by zero, unless you explicitly specify a size using
setSize() . To specify the size, place it in a layout manager that
specifies the size.

You can use the space to draw, write text, or receive keyboard or
mouse input. "Drawing in AWT" on page 10-39 in Module 10,
"Building Java GUIs," shows you how to draw effectively in the AWT.

Generally, a Canvas is used either to provide general drawing space or
to provide a working area for a custom component.

Figure C-6 Canvas Component

The Canvas can “listen” to all the events that are applicable to a
general component. In particular, you might want to add
KeyListener , MouseMotionListener , or MouseListener objects to it
to allow it to respond in some way to user input.

Note – To receive key events in a Canvas , it is necessary to call the
requestFocus method of the Canvas . If this is not done, it is generally
not possible to “direct” the keystrokes to Canvas . Instead, the
keystrokes go to another component or are perhaps lost entirely.

✓ A Canvas is usually extended for use as a drawing component.

C

The AWT Component Library C-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Canvas

The following is an example of a Canvas. This program changes the
color of the Canvas each time a key is pressed.

1 import java.awt.*;
2 import java.awt.event.*;
3 import java.util.*;
4
5 public class MyCanvas extends Canvas
6 implements KeyListener{
7 private int index;
8 Color colors[] = { Color.red, Color.green, Color.blue };
9
10 public void paint(Graphics g) {
11 g.setColor(colors[index]);
12 g.fillRect(0, 0, getSize().width, getSize().height);
13 }
14
15 public void keyTyped(KeyEvent ev) {
16 index++;
17 if (index == colors.length) {
18 index = 0;
19 }
20 repaint();
21 }
22
23 // Unused KeyListener methods
24 public void keyPressed(KeyEvent ev) { }
25 public void keyReleased(KeyEvent ev) { }
26
27 public static void main(String args[]) {
28 Frame f = new Frame("Canvas");
29 MyCanvas mc = new MyCanvas();
30 mc.setSize(150, 150);
31 f.add(mc, BorderLayout.CENTER);
32 mc.requestFocus();
33 mc.addKeyListener(mc);
34 f.pack();
35 f.setVisible(true);
36 }
37 }

C

C-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Label

A Label object displays a single line of static text. The program can
change the text, but the user cannot. No special borders or other
decorations are used to delineate a Label .

1 Frame f = new Frame("Label");
2 Label lb = new Label("Hello");
3 f.add(lb);

Figure C-7 Label

Label is not usually expected to handle events, but can do so in the
same manner as a Canvas . That is, keystrokes can be picked up
reliably only by calling requestFocus() .

C

The AWT Component Library C-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

TextField

The TextField is a single line text input device. For example:

1 Frame f = new Frame("TextField");
2 TextField tf = new TextField("Single line", 30);
3 tf.addActionListener(this);
4 f.add(tf);

Figure C-8 TextField

Because you can only have one line, an ActionListener can be
informed, using actionPerformed() , when the Enter or Return key is
pressed. You can add other component listeners if desired.

Note – The second argument in the TextField constructor is used for
the number of characters that are visible. There is no limit on the
number of characters allowed in the TextField . Scrolling occurs when
the text overflows.

C

C-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

TextField

You can use the TextField application to mask certain keys from
input. The following code creates a TextField that ignores the typing
of digits:

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class SampleTextField {
5 private Frame f;
6 private TextField tf;
7
8 public void go() {
9 f = new Frame("TextField");
10 tf = new TextField("Single Line", 30);
11 tf.addKeyListener(new NameHandler());
12 f.add(tf, BorderLayout.CENTER);
13 f.pack();
14 f.setVisible(true);
15 }
16
17 class NameHandler extends KeyAdapter {
18 public void keyPressed(KeyEvent e) {
19 char c = e.getKeyChar();
20 if (Character.isDigit(c)) {
21 e.consume();
22 }
23 }
24 }
25
26 public static void main (String args[]) {
27 SampleTextField txtf = new SampleTextField();
28 txtf.go();
29 }
30 }

C

The AWT Component Library C-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

TextArea

The TextArea is a multiple-line, multiple-column text input device.
You can set it to read-only, using the method setEditable(boolean) .
It displays horizontal and vertical scrollbars.

The following example sets up a 4 row X 30 character text area
containing “Hello!” initially.

1 f = new Frame("TextArea");
2 ta = new TextArea("Hello!", 4, 30);
3 f.add(ta, BorderLayout.CENTER);

Figure C-9 TextArea

The listener you specify with addTextListener() receives
notification of key strokes in the same way that TextField does.

You can add general component listeners to the text area, but because
the text is multi-line, pressing the Enter key puts another character
into the buffer. If you need to recognize “completion of input,” you
can put an Apply or Commit button next to the text area to allow the
user to indicate this.

C

C-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Text Components

Both TextArea and TextField are documented in two parts. If you
look up a class called TextComponent you find several methods that
TextArea and TextField have in common; for example,
setEditable() . This is because TextArea and TextField are both
subclasses of TextComponent .

You have seen that the constructors for both TextArea and TextField
classes allow you to specify the number of columns for the display.
Remember that the size of a displayed component is the responsibility
of a layout manager, so these preferences might be ignored.
Furthermore, the number of columns is interpreted in terms of the
average width of characters in the font that is being used. The number
of characters that are actually displayed might vary radically if a
proportionally spaced font is used.

TextField and TextArea components inherit the default behavior for
keystrokes from TextComponent ; that is, the characters are added to
an internal character buffer and are displayed on the screen. The
character buffer can be retrieved (as a String) by the getText()
method.

C

The AWT Component Library C-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

List

A List presents text options that are displayed in a region that allows
several items to be viewed at one time. The List is scrollable and
supports both single- and multiple-selection modes. For example:

1 List lst = new List(4, true);
2 lst.add("Hello");
3 lst.add("there");
4 lst.add("how");

Figure C-10 List

The numeric argument to the constructor defines the preferred height
of the list in terms of the number of visible rows. As always, a layout
manager can override this value. A true boolean argument indicates
that the list should allow the user to make multiple selections.

Figure C-11 List With Items Selected

When an item is selected or deselected, AWT sends an instance of
ItemEvent to the list. When the user double-clicks on an item in a
scrolling list, an ActionEvent is generated by the list in both single-
and multiple-selection modes. Items are selected from the list
according to platform conventions. For a UNIX Motif environment, a
single click highlights an entry in the list, but you must double click to
trigger the action of the list.

C

C-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dialog

A Dialog component is associated with a Frame. It is a free-standing
window with some decorations. It differs from a Frame in that fewer
decorations are provided and you can request a “modal” dialog, which
causes it to store all forms of input until it is closed.

Figure C-12 Dialog

Dialog is either modeless or modal. A modeless Dialog means you
can interact with both the Frame and the Dialog at the same time. A
modal Dialog blocks input to the remainder of the application,
including the Frame, until the Dialog box is dismissed.

Because Dialog subclasses Window, its default layout manager is
BorderLayout.

1 d = new Dialog(f, "Dialog", true);
2 d.setLayout(new GridLayout(2,1));
3 dl = new Label("Hello, I'm a Dialog");
4 db1 = new Button("OK");
5 d.add(dl);
6 d.add(db1);
7 d.pack();

The first argument in the Dialog constructor designates the owner of
the Dialog that is being constructed. In the previous example, f is the
Frame that owns the Dialog .

C

The AWT Component Library C-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Dialog

A Dialog is usually not made visible to the user when it is first
created. It is displayed in response to some user interface action, such
as the pressing of a button.

public void actionPerformed(ActionEvent ev) {
d.setVisible(true);

}

Note – Treat a Dialog as a reusable device. That is, do not destroy the
individual object when it is dismissed from the display; keep it so it
can be used later. The garbage collector can make it too easy to waste
memory. Remember, creating and initializing objects takes time and
should not be done without some thought.

To hide a Dialog , you must call setVisible(false) . You do this by
adding a WindowListener to it and awaiting a call to the
windowClosing() method in that listener. This parallels the handling
of closing a Frame.

✓ Handling window events is more complicated. The listener class can extend
WindowAdapter or implement WindowListener . The PaintGUI class in this module’s solution
directory contains an example of Window handling code.

C

C-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

FileDialog

FileDialog is an implementation of a file selection device. It has its
own free standing window, and allows the user to browse the file
system and select a particular file for further operations. For example:

1 FileDialog d = new FileDialog(parentFrame, "FileDialog");
2 d.setVisible(true); // block here until OK selected
3 String fname = d.getDirectory() + d.getFile();

Figure C-13 Microsoft Windows Implementation of FileDialog

In general, it is not necessary to handle events from the FileDialog .
The setVisible(true) call blocks events until the user selects OK, at
which point the name of the selected file is requested. This information
is returned as a String .

✓ You can use the FileDialog constructor that takes three parameters, and send
FileDialog. You must use SAVEas the third parameter to get a "Save" dialog.

C

The AWT Component Library C-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

FileDialog

Figure C-14 Solaris Operating Environment Implementation of
FileDialog

C

C-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

ScrollPane

ScrollPane provides a general container that cannot be used as a free
standing component. It should always be associated with a container
(for example, a Frame). It provides a viewport onto a larger region and
scrollbars to manipulate that viewport. For example:

1 Frame f = new Frame("ScrollPane");
2 Panel p = new Panel();
3 ScrollPane sp = new ScrollPane();
4 p.setLayout(new GridLayout(3, 4));
5 .
6 .
7 .
8 sp.add(p);
9 f.add(sp, BorderLayout.CENTER);
10 f.setSize(100, 100);
11 f.setVisible(true);

Figure C-15 ScrollPane

The ScrollPane creates and manages the scroll bars and holds a
single component. You cannot control the layout manager it uses.
Instead, you can add a Panel to the scroll pane, configure the layout
manager of that panel, and place your components in that panel.

Generally, you do not handle events on a ScrollPane; events are
handled through the components that they contain.

C

The AWT Component Library C-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

PopupMenu

The PopupMenu provides a standalone menu that can be displayed on
any component. You can add items or menus to a pop-up menu. For
example:

1 Frame f = new Frame("PopupMenu");
2 Button b = new Button("Press Me");
3 PopupMenu p = new PopupMenu("Popup");
4 MenuItem s = new MenuItem("Save");
5 MenuItem ld = new MenuItem("Load");
6 b.addActionListener(this);
7 f.add(b,BorderLayout.CENTER);
8 p.add(s);
9 p.add(ld);
10 f.add(p);

For the PopupMenu to be displayed, you must call the show() method.
The show() method requires a component reference to act as the
origin for the x and y coordinates. Usually you would use the trigger
component for this, but in this case, the trigger is the Button b .

Figure C-16 PopupMenu

✓ The Microsoft Windows version of the pop-up menu is not available because it does not
work properly in Java 2 SDK. You get a pop-up menu containing two buttons that are
labeled Press Me. This could be an opportunity to discuss compatibility. A bug report has
been filed.

C

C-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Popup Menu

1 public void actionPerformed(ActionEvent ev) {
2
3 // display popup at (10,10) relative to b
4 p.show(b, 10, 10);
5 }

Note – You must add the PopupMenu to a “parent” component. This is
not the same as adding components to containers. In this example, the
pop-up menu has been added to the enclosing Frame.

✓ At this point, students might have questions about the restrictions on the containment
hierarchy.

D-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Using theGridBagLayout D

This appendix discusses the use of the GridBagLayout in the
production of complex user interfaces.

D

D-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

GUIs should make extensive use of layout managers, because the
alternative, absolute positioning by pixel coordinates, is not platform
portable. Issues such as the sizes of fonts and screens ensure that a
layout that is correct and based on coordinates is unusable on any
other platform.

Layout managers avoid these difficulties by laying out the GUI
according to a policy. For example, the policy of the GridLayout is to
position child components in equal-sized cells, starting at the top left
and working left to right, top to bottom until the grid is full.

This course assumes you know about the basic three layout managers,
FlowLayout , GridLayout , and BorderLayout . If you are unsure about
any of these, ask your instructor if you can discuss them during a
break.

D

Using the GridBagLayout D-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Layout Managers

If you know the basic three layout managers, you also know that they
are somewhat limited in their capabilities, and that it can be hard,
often involving many nested panels, to produce a layout that is useful
in a production program. This appendix looks at the GridBagLayout,
which is more powerful.

D

D-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The GridBagLayout

The GridBagLayout lays out components using a grid. However,
unlike the GridLayout , child components are not necessarily
constrained to occupy exactly one entire grid cell, neither are all rows
and columns equal in size. Rather, a component can be assigned
multiple cells, horizontally, vertically, or both, and can exist within that
region.

D

Using the GridBagLayout D-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The GridBagLayout

Figure D-1 Sample GridBagLayout With Four Rows and Four
Columns

The number of rows and columns in a GridBagLayout is determined
by the number of cells that are in use. This contrasts with the
GridLayout where (generally) you specify the row and column count
at the time the layout is constructed.

The basic height of a row is determined by the largest component in
that row. Similarly, the basic width of a column depends on the largest
component in it. In Figure D-1, each grid cell is the basic size of a
JButton with a single-digit label.

D

D-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The GridBagLayout

Figure D-2 Sample GridBagLayout Showing Cells Expanded by
Weight

When the total space available to the GridBagLayout exceeds that
needed for all the basic dimensions, the extra space is shared using a
concept called weight. In Figure D-2, the weight has been applied to the
last column and to the third row (that is, the row and column that
includes the button labeled “8”).

A component in a GridBagLayout can occupy multiple consecutive
rows, and multiple consecutive columns if desired. The total space
allotted to one component is referred to as the component’s region. In
Figure D-2, the button labeled “4” extends across two columns
horizontally.

The size of a component in a GridBagLayout is not necessarily
constrained to occupy the entire assigned region. Instead, the
component can have its natural size, its natural height with the full
width of its region, or its natural width with the full height of its
region. Of course, it can also be constrained to fill the region. This
property is known as the fill of a component. In Figure D-2, the buttons
labeled “5” and “6” do not fill the vertical space available to them;
similarly, the button labeled “8” fills vertically, but not horizontally.

D

Using the GridBagLayout D-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The GridBagLayout

Figure D-3 Sample GridBagLayout Showing the Effect of Anchor

When a component does not fill the entire region allocated to it, its
position within that region can be controlled using a concept called
anchor. Anchor takes one of nine values. Eight of these values are
compass points, NORTH, SOUTHWEST,and so on. The ninth is CENTER. If
a component has its natural size and an anchor of NORTHWEST, then it
will be positioned at the top left of its allocated region.

✓ In some systems (XMotif for example) the effect of anchor is referred to as gravity.

In Figure D-3, the two examples have differing anchor settings.
Specifically, the button labeled “5” has a CENTERanchor in the left-
hand example, but a SOUTHanchor in the right-hand example. The
button labeled “8” has a CENTERanchor in the left-hand example, but a
WESTanchor in the right-hand example.

Clearly, there is some interaction between anchor and the fill of a
component. If the fill specifies that the component occupies the entire
region allotted to it, then anchor has no significance. If the fill value
specifies that a component occupies the allocated region entirely in the
horizontal direction, then the only anchor values that are useful are
NORTH, CENTER, and SOUTH

D

D-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The GridBagConstraints Class

You have seen the principles by which the GridBagLayout makes
positioning decisions, but not how those preferences are supplied to it.
This is done using an object of the class GridBagConstraints . Each
time you add a Component to a Container that has a GridBagLayout ,
you provide an instance of GridBagConstraints that contains the
values needed to describe the layout of that Component .

The most significant fields of the GridBagConstraints object are:

● gridx and gridy – These integer fields are used to specify the row
and column numbers at the top left of the component’s region.
They are effectively the component’s coordinates.

● gridwidth and gridheight – These integer fields describe the
number of columns and rows, respectively, over which the
component’s region extends.

● fill – This field indicates how the component is sized within its
region. Values for this field are constants in the
GridBagConstraints class. The four symbolic values are: NONE,
HORIZONTAL, VERTICAL, and BOTH.

D

Using the GridBagLayout D-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The GridBagConstraints Class

● anchor – This field indicates the anchor applied to the component.
Values are constants in the GridBagConstraints class. The nine
symbolic values are: NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, SOUTHWEST, and CENTER.

● weightx and weighty – These fields are somewhat unusual in that
they apply to the column and row to which the component is
being added, not the component itself. The weight values are used
to distribute “spare” space when the layout has more screen area
available to it than it needs. The actual values of weight are
significant only in a relative sense. That is, it does not matter if a
particular value is 5 or 0.5. What matters is the proportion of the
weight allocated to the sum of all weights allocated.

Note – Avoid setting weights on the same row or column for more
than one component. Doing so will confuse anyone reading the
program.

D

D-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

Design Steps

When designing with a GridBagLayout :

1. Sketch the components as you want them to appear.

2. Make another sketch with the window enlarged, and plan how
you want the extra space to be allocated.

D

Using the GridBagLayout D-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

Basic, unexpanded layout proposal

Basic, expanded layout proposal

D

D-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

3. Identify the gridlines based on the edges of components in your
pictures. Be particularly careful if your diagram shows two
component edges in nearly the same alignment—did you mean
them to be aligned? When you have identified the gridlines on one
drawing, do this again on the second sketch.

Extra column

Loose component

0 1 2 3 4

0 1 2 3 4

0

1

2

3

4

5

6

0

1

2

3

4

5

6

D

Using the GridBagLayout D-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

4. Decide how you want to allocate the extra space. In some cases, it
might be easiest to do this in terms of percentages. Once you have
determined your percentages, you can use them as weightx and
weighty values directly (even if they do not finally add up
to 100).

The expanded version brings out the existence of an extra column,
which is not really noticeable until the display is expanded. You would
be unlikely to recognize this column’s existence in the unexpanded
diagram.

The “loose component” in column 0, third row down, does not match
any of the grid cell boundaries. Rather, it appears to overlap rows 4
and 5. The component actually is located in a region that extends over
rows 3 through 6 inclusive, and is vertically centered in that region.

Columns 0, 2, and 4 do not change size, but columns 1 and 3 do. It is
not entirely clear how the space is shared, but a reasonable working
guess is that new space is allocated equally between them.

Rows 0, 1, and 6 do not change size, but rows 2 through 5 all stretch
equally.

D

D-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

5. Now that you have designed the underlying grid, you can start to
position each component over that grid. Start by identifying the
top left row and column for each component region; this gives you
the gridy and gridx values for each.

6. Determine the width and height of the region in terms of columns
and rows; these are the gridwidth and gridheight values.

Component gridx gridy gridwidth gridheight

1 0 0 5 1

2 0 1 1 1

3 1 1 1 1

4 2 1 1 1

5 3 1 2 1

6 0 2 1 4

7 1 2 3 4

8 4 2 1 1

9 4 3 1 1

10 4 4 1 1

11 4 5 1 1

12 0 6 5 1

1

2 3 4 5

6 7

8

9

10

11

12

D

Using the GridBagLayout D-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

7. For each component, consider how it occupies the region allocated
to it. If it fills the region entirely, it has a fill value of BOTH. If it
fills the region from side to side but not vertically, then its fill
value is HORIZONTAL. If it fills its region vertically but not
horizontally, then its fill value is VERTICAL. If it does not fill the
region in either direction, then its fill value is NONE.

The fill value should be BOTHfor all components that take the full size
of their available regions. This is important even if the region does not
stretch. For example, the cells occupied by components 8, 9, 10, and 11
do not stretch horizontally, so you might think that a horizontal
component of fill was unnecessary. However, if you specify only a fill
of VERTICAL, you will find that the components are given their
preferred sizes, and because their labels are shorter, components 8 and
9 are slightly smaller than components 10 and 11.

So, in this example, the only component that is not set to fill BOTHis
component 6. This should have a fill value of HORIZONTAL, to ensure
that it takes up the full width of its region.

1

2 3 4 5

6 7

8

9

10

11

12

D

D-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

8. For each component, consider how it is positioned within the
region allocated to it and hence the anchor value for the
component. If a component has a fill value of BOTHthen the
anchor value is irrelevant. Components with HORIZONTAL fill
should have an anchor of NORTH, CENTER, or SOUTH. Components
with VERTICAL fill should be anchored WEST, CENTER, or EAST.
Components with a fill of NONE, can have an anchor of any of
the nine values.

Anchor values are significant only when a component’s region is
larger than the component itself. In this example, this applies only to
component 6. Here the component must be centered vertically,
although it fills the available width. In consequence, any of the anchor
values EAST, WEST, or CENTERwould result in the required behavior,
but CENTERis probably the most reasonable because it most directly
expresses the required result.

D

Using the GridBagLayout D-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

9. Add the components and allocate the weights to the rows and
columns. Choose one component for each row and one component
for each column for the weight values. These components should
occupy only one column if they are providing weightx , and one
row if they are providing weighty . If possible, use components on
the top row to specify weightx and components in the left column
to specify weighty .

0 1 2 3 4

0

1

2

3

4

5

6

1

2 54

1

3

6
7

8

9

12

10

11

D

D-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

Example

To allocate weights to the rows and columns, identify one component
in each column that needs to stretch horizontally, and one component
in each row that stretches vertically. These components should occupy
only a single cell along the axis of stretch, and be near the edges of the
layout. This improves the consistency and readability of your code.

For this example, the stretch is in columns 1 and 3, and rows 2
through 5.

Components 8, 9, 10, and 11 are suitable to apply the vertical weight
values for rows 2 through 5, and component 3 is appropriate to apply
the horizontal weight for column 1. However, there is no obvious
component with which a horizontal weight can be applied to
column 3.

One way to approach this is to add a dummy component to the cell at
row 2, column 3. This component must have zero by zero size so that
it does not obscure component 8. A Canvas is suitable for this because
its preferred size is zero by zero, unless explicitly set otherwise. Once
added into row 3 column 4, it remains at zero size provided it has a fill
value of NONE.

You can use this approach to simplify any layout. Create an extra row and
an extra column along the bottom and right hand edges of your layout.
Populate these cells with zero-sized canvases and use them to apply
weights.

D

Using the GridBagLayout D-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

Example (Continued)

Once you have applied the GridBagConstraints values to
components added to a GridBagLayout , the desired behavior is
achieved. The screen shots shown here are derived from the
implementation program listed on the next page.

D

D-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

Example (Continued)

The following is the main part of the program for this example, with
the values used in the GridBagConstraints .

1 import java.awt.*;
2 import javax.swing.*;
3
4 public class ExampleGB {
5 public static void main(String args[]) {
6 JFrame f = new JFrame("GridBag Example");
7 Container c = f.getContentPane();
8 c.setLayout(new GridBagLayout());
9 GridBagAdder.add(c, new Canvas(), 3, 2, 1, 1, 1, 0,
10 GridBagConstraints.NONE, GridBagConstraints.CENTER);
11 GridBagAdder.add(c, new JButton("1"), 0, 0, 5, 1, 0, 0,
12 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
13 GridBagAdder.add(c, new JButton("2"), 0, 1, 1, 1, 0, 0,
14 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
15 GridBagAdder.add(c, new JButton("3"), 1, 1, 1, 1, 1, 0,
16 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
17 GridBagAdder.add(c, new JButton("4"), 2, 1, 1, 1, 0, 0,
18 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
19 GridBagAdder.add(c, new JButton("5"), 3, 1, 2, 1, 0, 0,
20 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
21 GridBagAdder.add(c, new JButton("6"), 0, 2, 1, 4, 0, 0,
22 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
23 GridBagAdder.add(c, new JButton("7"), 1, 2, 3, 4, 0, 0,
24 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
25 GridBagAdder.add(c, new JButton("8"), 4, 2, 1, 1, 0, 1,
26 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
27 GridBagAdder.add(c, new JButton("9"), 4, 3, 1, 1, 0, 1,
28 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
29 GridBagAdder.add(c, new JButton("10"), 4, 4, 1, 1, 0, 1,
30 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
31 GridBagAdder.add(c, new JButton("11"), 4, 5, 1, 1, 0, 1,
32 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
33 GridBagAdder.add(c, new JButton("12"), 0, 6, 5, 1, 0, 0,
34 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
35 f.pack();
36 f.setVisible(true);
37 }

D

Using the GridBagLayout D-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Designing With GridBagLayout

Example (Continued)

Supporting the code on the previous page is this inner class. It
provides the add method that simplifies setting up the
GridBagConstraints values.

38 static class GridBagAdder {
39 // OK to reuse this as we overwrite all elements every time
40 // Note that this is not threadsafe however!
41 static GridBagConstraints cons = new GridBagConstraints();
42 public static void add(Container cont,Component comp,int x, int y,
43 int width,int height,int weightx,int weighty,
44 int fill,int anchor) {
45
46 cons.gridx = x;
47 cons.gridy = y;
48 cons.gridwidth = width;
49 cons.gridheight = height;
50 cons.weightx = weightx;
51 cons.weighty = weighty;
52 cons.fill = fill;
53 cons.anchor = anchor;
54 cont.add(comp, cons);
55 }
56 }
57 }

D

D-22 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

RELATIVEand REMAINDER

Where a layout involves a large number of components in a fairly
simple layout, it can be quite time consuming to set up the gridx and
gridy values for each one. This situation is aggravated when
maintenance is needed; for example, to insert one new component.

To help with this situation, you can use the value RELATIVE to
indicate that a component should be positioned just to the right, or just
underneath, the one previously added.

In addition, you can use RELATIVE as a value in the gridwidth and
gridheight fields, to make the component extend over all rows
below, or all columns to the right, of the one to which the component
is added, except the last row or column.

If you set the value REMAINDERin a gridwidth or gridheight
field, the component extends to the very last row or column.

D

Using the GridBagLayout D-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

RELATIVE and REMAINDER

Careful use of these shorthand features can make code easier to write
and shorter, which can make it easier to read. However, in some
situations, the layout is dependent on the order of adding components
and actually makes the code more difficult to read.

E-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

JavaFoundationClasses E

Objectives

Upon completion of this appendix, you should be able to:

● Identify the key features of Java Foundation Classes

● Describe the key features of the javax.swing package

● Identify Swing components

● Define containers and components, and explain how they work
together to build a Swing GUI

● Write, compile, and run a basic Swing application

● Use top-level containers, such as JFrame and JApplet effectively

Java 2 SDK offers the Java Foundation Classes (JFC), part of which is
Swing. Swing is a set of components (written in 100% Pure Java™ for
platform independence), layered on top of the AWT. This appendix
introduces JFC, and the implementation of Swing GUIs.

E

E-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Additional Resources

Additional resources – the following reference can provide additional
details on the topics discussed in this appendix:

● The Java Tutorial, an online tutorial from Sun Microsystems,
available from:
http://java.sun.com/docs/books/tutorial

E

Java Foundation Classes E-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing Introduction

The Java Foundation Classes (JFC) are a comprehensive set of GUI
components and services that dramatically simplify the development
and deployment of robust Java applications.

JFC, an integral part of Java 2 SDK, is primarily composed of five
APIs: AWT, Java 2D, Accessibility, Drag and Drop, and Swing. It
provides a full set of application development packages to assist the
developer in designing complex interactive applications.

The AWT components, as discussed in Appendix C, ‘‘The AWT
Component Library," provide a variety of GUI tools for a wide class of
Java applications.

Java 2D is a graphics API designed to provide Java applications with
an advanced set of classes for two-dimensional (2D) graphics and
imaging. The Java 2D API extends the capabilities of the java.awt
and the java.awt.image packages and provides a rich set of paint
styles, mechanisms for defining complex shapes, methods, and classes
for fine-tuning the rendering process. An extended font set is included
in this API.

The Accessibility API provides an advanced set of tools to assist in
developing applications that use non-traditional means for input and
output. It provides an interface for assistive technologies, such as
screen readers, screen magnifiers, audible text readers (speech
processing), and so on.

Drag and Drop technology provides interoperability between Java and
native applications to exchange data across Java applications and
those applications that do not support Java technology.

This JFC appendix focuses primarily on Swing. Swing is designed for
forms-based application development. It provides a rich set of
components and a framework to specify how to present GUIs that are
visually independent of the platform.

E

E-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing Introduction

Swing provides a full set of GUI components written in the Java
programming language for portability.

Pluggable Look and Feel

Pluggable look and feel enables developers to build applications that
execute on any platform as if it were developed for that specific
platform. A program executed in the Microsoft Windows environment
behaves as if it were developed for this environment; and the same
program executed on the UNIX platform behaves as if it were
developed for the UNIX environment.

Developers can create their own custom Swing components, with any
kind of look and feel they want to design. This increases the
consistency of applications and applets deployed across platforms. An
entire application’s GUI can switch from one look and feel to a
different one at runtime.

E

Java Foundation Classes E-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing – Introduction

Swing Architecture

Swing provides a more comprehensive set of components than the
AWT, introducing new features and rich capabilities. The Swing APIs
are built around a number of APIs that implement various parts of the
AWT. This ensures that all of the earlier AWT components can still be
used. Most Swing components do not use any of the platform-specific
implementations that the AWT does, which gives Swing its
customization and pluggable look and feel features.

Figure E-1 Java Foundation Classes

Figure E-1 illustrates the interrelationship between various parts of
JFC. Java 2D, Drag and Drop, and Accessibility APIs are part of AWT
and JFC, but they are not part of Swing. This is because these
components use some native code, whereas Swing does not.

Swing is built around a new component called the JComponent , which
extends from the AWT’s Container class.

E

E-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing – Introduction

The Swing Hierarchy

Figure E-2 illustrates the Swing component hierarchy.

Figure E-2 Swing Component Hierarchy

Swing GUIs use two kinds of classes: GUI classes and non-GUI
support classes. The GUI classes are visual and descendents of
JComponent , and are called “J” classes. The non-GUI classes provide
services and perform vital functions for GUI classes; however, they do
not produce any visual output.

Note – Swing’s event handling classes are examples of non-GUI
classes.

JTextComponent

AbstractButton

JPanel
JComboBox
JLabel
JLayeredPane
JList
JToolBar
JMenuBar
JPopupMenu
JPanel
JScrollBar
JScrollPane
JSlider
JTable
JSeparator
JTree
JProgressBar
JRootPane
JSplitPane

JTextArea
JTextField
JEditorPane

JToggleButton
JButton
JMenuItem

JCheckBox
JRadioButton

JRadioButtonMenuItem
JCheckBoxMenuItem
JMenu

JPasswordField

javax.swing.JComponent

java.awt.Container

E

Java Foundation Classes E-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing – Introduction

Swing Components

The Swing components primarily provide components for text
handling, buttons, labels, lists, panes, combo boxes, scroll bars, scroll
panes, menus, tables, and trees. Some of the components appear as
follows:

JApplet JButton, JToggleButton

JComboBox JOptionPane

JList JLabel

Figure E-3 Swing Components

E

E-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Swing – Introduction

Swing Components (Continued)

JScrollPane JTable

JScrollBar JSlider

JTooltip JTree

Figure E-4 More Swing Components

E

Java Foundation Classes E-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

The output of the HelloSwing application displays the window as
shown in Figure E-5.

Figure E-5 HelloSwing Application

Each time the user clicks on a button, the label is updated.

E

E-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

HelloSwing

The following is an example of the HelloSwing application.

1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import javax.accessibility.*;
5
6 public class HelloSwing implements ActionListener {
7 private JFrame jFrame;
8 private JLabel jLabel;
9 private JPanel jPanel;
10 private JButton jButton;
11 private AccessibleContext accContext;
12
13 private String labelPrefix = "Number of button clicks: ";
14 private int numClicks = 0;
15
16 public void go() {
17 jFrame = new JFrame("HelloSwing");
18 jLabel = new JLabel(labelPrefix + "0");
19
20 jButton = new JButton("I am a Swing button!");
21
22 // Create a shortcut: make ALT-I be equivalent
23 // to pressing mouse over button.
24 jButton.setMnemonic('i');
25
26 jButton.addActionListener(this);
27
28 // Add support for accessibility.
29 accContext = jButton.getAccessibleContext();
30 accContext.setAccessibleDescription(
31 "Pressing this button increments " +
32 "the number of button clicks");
33
34 // Set up pane.
35 // Give it a border around the edges.
36 jPanel = new JPanel();
37 jPanel.setBorder(
38 BorderFactory.createEmptyBorder(30,30,10,30));

E

Java Foundation Classes E-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

HelloSwing (Continued)

39
40 // Arrange for compts to be in a single column.
41 jPanel.setLayout(new GridLayout(0, 1));
42
43 // Put compts in pane, not in JFrame directly.
44 jPanel.add(jButton);
45 jPanel.add(jLabel);
46 jFrame.setContentPane(jPanel);
47
48 // Set up a WindowListener inner class to handle
49 // window's quit button.
50 WindowListener wl = new WindowAdapter() {
51 public void windowClosing(WindowEvent e) {
52 System.exit(0);
53 }
54 };
55
56 jFrame.addWindowListener(wl);
57
58 jFrame.pack();
59 jFrame.setVisible(true);
60 }
61
62 // Button handling.
63 public void actionPerformed(ActionEvent e) {
64 numClicks++;
65 jLabel.setText(labelPrefix + numClicks);
66 }
67
68 public static void main(String[] args) {
69 HelloSwing helloSwing = new HelloSwing();
70 helloSwing.go();
71 }
72 }
73

E

E-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

Importing Swing Packages

The line import javax.swing.* imports the entire Swing package,
which includes the standard Swing components and functionality.

Choosing the Look and Feel

Lines 20–26 of HelloSwing formats the application’s look and feel. The
method getLookAndFeel() returns the Windows look and feel on a
Microsoft Windows environment. On machines running the Solaris
Operating Environment, it returns the Motif look and feel. These lines
are not necessary for this example because they are the default value.

E

Java Foundation Classes E-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

Setting up Windows

Swing programs implement their primary windows with JFrame
objects. The JFrame class is a subclass of AWT’s Frame class. It also
adds some features found only in Swing. The following is the
HelloSwing code that deals with its JFrame :

public HelloSwing() {
 JFrame jFrame;
 JPanel jPanel;

 jFrame = new JFrame("HelloSwing");
 jPanel = new JPanel();

 jFrame.setContentPane(jPanel);

The code is similar to the code for using a Frame. The only difference
is that you cannot add components to a JFrame directly. Instead, you
either add components to the JFrame ’s content pane, or you provide a
new content pane.

A content pane is a Container that contains all of the frame’s visible
components except for the menu bar (if there is one). To get a JFrame ’s
content pane, use the getContentPane() method. To set its content
pane (as shown in the preceding example), use the
setContentPane() method.

✓ JFrame is an extended version of java.awt.Frame that adds support for interposing input
and painting behavior in front of the frame’s children (see glassPane), support for special
children that are managed by a LayeredPane (see rootPane), and for Swing MenuBars .

E

E-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

Setting up Swing Components

The HelloSwing program explicitly instantiates four Swing
components: a JFrame , JButton , JLabel, and JPanel . HelloSwing
uses the code in lines 33–45 to initialize the JButton.

✓ Emphasize the fact that keyboard navigation is a feature of JFC and that it was not
present earlier. Also mention that Swing adds automatic window-close handling to JFrame
so that you do not always have to implement a window listener.

Line 31 creates the button. Line 35 sets the ALT-I key combination as a
shortcut used to simulate a button click. Line 37 registers an event
handler for the click. Lines 40–43 describe a button, so that assistive
technologies can provide information on the button’s functionality.

Lines 47–57 initialize the JPanel . They create the JPanel object, give
it a border, and set its layout manager to one that puts the panel’s
contents in a single column. Finally, a button and a label are added to
the Panel . The Panel in HelloSwing uses an invisible border to put
extra padding around it.

E

Java Foundation Classes E-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Basic Swing Application

Supporting Assistive Technologies

The only code in HelloSwing.java that exists solely to support the
assistive technologies is the following:

accContext = jButton.getAccessibleContext();
accContext.setAccessibleDescription(

 "Pressing this button increments ” +
“ the number of button clicks.");

Assistive technologies can also use the following set of information:

jButton = new JButton("I’m a Swing button!”);
jLabel = new JLabel(labelPrefix + "0");
jLabel.setText(labelPrefix + numClicks);

Accessibility support is built into JFrame , JButton , JLabel , and all
other Swing components. Assistive technologies can get the text of or
the text associated with a specific part of a component.

✓ Emphasize the advantages of using assistive technologies.

E

E-16 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building a Swing GUI

The Swing package defines two types of components:

● Top-level containers (JFrame , JApplet , JWindow, and JDialog)

● Lightweight components (such as JButton , JPanel , and JMenu)

The top-level containers provide the framework in which the
lightweight components exist. Specifically, a top-level Swing container
provides an area in which lightweight Swing components can draw
themselves. Top-level containers are Swing subclasses of their
heavyweight AWT component counterpart. These Swing containers
rely on the native code of their AWT superclass to properly interface
with the hardware.

Every Swing component should have a top-level Swing container
above it in its containment hierarchy. For example, you should
implement every applet containing Swing components as a subclass of
JApplet (which is itself a subclass of java.applet.Applet).
Similarly, you should implement every main window that contains
Swing components with a JFrame . Typically, if you are using Swing
components, you use only Swing components and Swing containers.

You can add swing components to a content pane that is associated
with a top-level container, but you cannot add swing components to
the top-level container directly.

E

Java Foundation Classes E-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building a Swing GUI

Figure E-6 illustrates the GUI containment hierarchy for a typical Swing
program that implements a window containing two buttons: a text
field and a list.

Figure E-6 GUI Containment Hierarchy

JFrame (a top-level Swing container)

content pane

JButton JButton JPanel

JTextField JList

.....

E

E-18 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building a Swing GUI

Figure E-7 illustrates another containment hierarchy figure for the same
GUI, except that the GUI is in an applet running in a browser:

Figure E-7 Containment Hierarchy of an Applet

JApplet (a top-level Swing container)

content pane

JButton JButton JPanel

JTextField JList

.....

.....

E

Java Foundation Classes E-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building a Swing GUI

The following is the code that constructs the GUI hierarchies shown in
the preceding figures.

1 import java.awt.*;
2 import javax.swing.*;
3
4 public class SwingGUI {
5 private JFrame topLevel;
6 private JPanel jPanel;
7 private JTextField jTextField;
8 private JList jList;
9
10 private JButton b1;
11 private JButton b2;
12 private Container contentPane;
13
14 private Object listData[] = {
15 new String("First selection"),
16 new String("Second selection"),
17 new String("Third selection")
18 };
19
20 public void go() {
21 topLevel = new JFrame("Swing GUI");
22
23 // Set up the JPanel, which contains the text field
24 // and list.
25 jPanel = new JPanel();
26 jTextField = new JTextField(20);
27 jList = new JList(listData);
28
29 contentPane = topLevel.getContentPane();
30 contentPane.setLayout(new BorderLayout());
31
32 b1 = new JButton("1");
33 b2 = new JButton("2");
34 contentPane.add(b1, BorderLayout.NORTH);
35 contentPane.add(b2, BorderLayout.SOUTH);
36
37 jPanel.setLayout(new FlowLayout());
38 jPanel.add(jTextField);
39 jPanel.add(jList);
40 contentPane.add(jPanel, BorderLayout.CENTER);

E

E-20 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Building a Swing GUI

41
42 topLevel.pack();
43 topLevel.setVisible(true);
44 }
45
46 public static void main (String args[]) {
47 SwingGUI swingGUI = new SwingGUI();
48 swingGUI.go();
49 }
50 }

✓ In general, you should avoid using heavyweight components in Swing GUI’s (except for
the top-level Swing container that hosts the GUI). The most noticeable problem with
mixing heavyweight and lightweight components is that when they overlap within a
container, the heavyweight component is always drawn on top of (that is, in front of) the
lightweight component.

E

Java Foundation Classes E-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

The JComponent Class

All Swing components are implemented as subclasses of the
JComponent class, which inherits from the Container class. Swing
components inherit the following functionality from JComponent:

● Borders

Using the setBorder() method, you can specify the border that
a component displays around its edges. You can specify that a
component have extra space around its edges using an
EmptyBorder instance.

● Double buffering

Double buffering can improve the appearance of a frequently
changing component. You do not have to write the double
buffering code—Swing provides it for you. By default, Swing
components are double buffered.

● Tool tips

By specifying a string with the setToolTipText() method, you
can provide help to users of a component. When the cursor pauses
over the component, the specified string is displayed in a small
window that appears near the component.

● Keyboard navigation

Using the registerKeyboardAction() method, you can enable
the user to use the keyboard, instead of the mouse, to maneuver
around the GUI. The combination of character and modifier keys
that the user must press to start an action is represented by a
KeyStroke object.

● Application-wide pluggable look and feel

Each Java application runtime has a UIManager object that
determines the look and feel of that runtime’s Swing components.
Subject to security restrictions, you can choose the look and feel
used by all Swing components by invoking the
UIManager.setLookAndFeel() method. Behind the scenes,
each JComponent object has a corresponding ComponentUI object
that performs all drawing, event handling, size determination, and
so on for that JComponent .

F-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

JavaNative Interface F

Native Methods

You have seen many features and basic functions within the Java
programming language. However, you might want to perform tasks
with applications written in the Java programming language that you
cannot accomplish with the Java programming language alone. In
these instances, you can use native methods to link in C programs that
handle your specific needs.

This added functionality comes at a price—your applications are no
longer easily portable. Other machines sharing your architecture must
have a local copy of your compiled C programs. Other machines with
different architectures require porting your C programs to those
architectures where they can be compiled by a native compiler.

This process can be difficult for complicated programs or impossible
for programs that rely on features found in the underlying operating
system. However, if you are dealing with a single architecture or you
want to add a well-defined adaptable feature, native methods can be
the best option to meet your needs.

F

F-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Native HelloWorld

The first task is to call a native method from a Java program. To do
this, create a native method for the HelloWorld program.

✓ HelloWorld requires no arguments and supplies no return values. How to handle
arguments is discussed later.

The following is an overview of the four basic steps required to
integrate native methods into your Java programs:

1. Define a Java class with the appropriate native method
declarations.

2. Create a header file for use with your C modules. Use the javah
utility to do this.

3. Write the C modules containing the native methods.

4. Compile the C code into a dynamic loadable library.

✓ JNI, unlike NMI of the past, does not require a stub file to interface to native code.

Defining Native Methods

Like other methods, you must declare all native methods you plan to
use, and they must be defined within a class.

Define your native HelloWorld method as follows:

public native void nativeHelloWorld();

There are two changes from the other public void methods you
have written:

● The key word native is used as a method modifier

● The body of the method (the actual implementation) is not defined
here; it is replaced with a semicolon (;)

F

Java Native Interface F-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Native HelloWorld

Defining Native Methods (Continued)

You must place the native method declaration inside a class definition.
The class containing the native method also contains a static code
block that loads the dynamic library with the implementation of your
method. The following is an example of a class definition for the
simple nativeHelloWorld() method:

1 class NativeHello {
2 public native void nativeHelloWorld();
3 static {
4 System.loadLibrary(“hello1”);
5 }
6 }

The Java runtime environment executes the defined static code
block when the class is loaded. In the example above, the hello1
library is loaded when the class NativeHello is loaded.

Calling Native Methods

Once you have wrapped your native methods into a class, you can
create objects of that class to access the native methods, just as you
would with regular class methods. The following is a program that
creates a new NativeHello object and calls your
nativeHelloWorld method.

1 class UseNative {
2 public static void main (String args[])
{
3 NativeHello nh = new NativeHello();
4 nh.nativeHelloWorld();
5 }
6 }

Use javac to compile the .java files. The .class files are used when
creating header files.

F

F-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Native HelloWorld

The javah Utility

You can create a C header file with the javah utility, based on the
NativeHello.class file. You invoke javah as follows:

javah -jni NativeHello

The generated file, NativeHello.h , provides you with the
information you need to write the C program. Here is the file as
generated by javah for this example:

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class NativeHello */
4
5 #ifndef _Included_NativeHello
6 #define _Included_NativeHello
7 #ifdef __cplusplus
8 extern "C" {
9 #endif
10 /*
11 * Class: NativeHello
12 * Method: nativeHelloWorld
13 * Signature: ()V
14 */
15 JNIEXPORT void JNICALL Java_NativeHello_nativeHelloWorld
16 (JNIEnv *, jobject);
17
18 #ifdef __cplusplus
19 }
20 #endif
21 #endif
22

The portion in bold characters gives the signature of the native method
yet to be implemented.

F

Java Native Interface F-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

A Native HelloWorld

Coding C Functions for Native Methods

At this point, the C program is the only piece of code missing. The C
code you write must include the header file above, plus jni.h ,
supplied with the Java 2 SDK in the $JAVA_HOME/include directory.
($JAVA_HOMErefers to the "root" directory of the Java 2 SDK.) Of
course, include any other header files necessary for your functions as
well.

For each function declared in the header file, you provide the body.
For this example, the C file, called MyNativeHello.c , looks like the
following:

1 #include <jni.h>
2 #include "NativeHello.h"
3 #include <stdio.h>
4
5 void Java_NativeHello_nativeHelloWorld
6 (JNIEnv *env, jobject obj) {
7 printf ("Hello from C");
8 }
9

F

F-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Putting It Together

Now that you have all of the pieces, you must tell the system how to
assemble them. First, compile your C program. You might have to
specify the location of the include files.

The following example uses the C compiler in the Solaris Operating
Environment ($JAVA_HOMErepresents the directory where the Java 2
SDK is installed):

cc -I$JAVA_HOME/include -I$JAVA_HOME/include/solaris -
G MyNativeHello.c -o libhello1.so

The two include directories you must access to compile this code are
$JAVA_HOME/include and $JAVA_HOME/include/solaris . You can
specify them on the command line or you can modify your INCLUDE
environment variable.

This example uses the Microsoft C compiler for Microsoft Windows:

C:\> cl MyNativeHello.c -Fehello1.dll -MD -LD javai.lib

Once you have created the library file, you can run your native
method test program:

java UseNative
Hello Native World!

If you get a java.lang.UnsatisfiedLinkError , you might need to
update the system LD_LIBRARY_PATHvariable to include the current
directory (so JVM can find libhello1.so).

F

Java Native Interface F-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

The previous sample native method does not handle information
accessed from the defining class, nor does it accept any arguments.
Both of the following tasks occur regularly in programming.

Passing a Java Primitive as an Argument

Arguments can be supplied to native methods in a Java program, just
as they are supplied to other methods. Suppose the following code
declaration exists in a file called NativeHello2.java for a native
method that prints count times:

1 public native void nativeHelloWorld2(int count);

This declaration produces the following entry in the header file
NativeHello2.h :

1 JNIEXPORT void JNICALL Java_NativeHello2_nativeHelloWorld2
2 (JNIEnv *, jobject, jint);

Now rewrite your C method to loop for the supplied number of times
(which comes in as the method’s third argument).

1 #include <jni.h>
2 #include "NativeHello2.h"
3 #include <stdio.h>
4
5 JNIEXPORT void JNICALL Java_NativeHello2_nativeHelloWorld2
6 (JNIEnv *env, jobject obj, jint countMax) {
7 int count;
8 for (count = 0; count < countMax; count++) {
9 printf ("Hello from C, count = %d\n",count);
10 }
11 }

F

F-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

Accessing a Java Primitive as an Object Data Member

The most common requirement in a native method is access to the
class data members. The jni.h file (in $JAVA_HOME/include)
contains several interface functions for use with objects inside a native
code module.

For example, consider writing a class that has two int variables, one
of which is static , which are accessed and modified by a native
method:

1 class NativeHello4 {
2 static int statInt = 2;
3 int instInt = 4;
4 public native int nativeHelloWorld4();
5 static {
6 System.loadLibrary("hello4");
7 }
8 }

Inside your C program, you can access these variables using
functions in <jni.h> .

1 #include <jni.h>
2 #include "NativeHello4.h"
3 #include <stdio.h>
4
5 /* The names of the Java object fields to be accessed. */
6 #define STAT_FIELD_NAME "statInt"
7 #define INST_FIELD_NAME "instInt"
8
9 /* This method displays the statInt and instInt fields and
10 returns the product of the two. */
11 jint Java_NativeHello4_nativeHelloWorld4
12 (JNIEnv *env, jobject obj) {
13
14 /* Class object. Used to find all fields and access
15 static ones.
16 jclass class = (*env)->GetObjectClass(env,obj);
17
18 jfieldID fid; /* A field reference. */
19 jint staticInt; /* A C copy of the static int. */
20 jint instanceInt;/* A C copy of the int. */
21

F

Java Native Interface F-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

Accessing a Java Primitive as an Object Data Member
(Continued)

22
23 /* Get reference to the static field. The "class"
24 argument connects the field to a class. The third
25 argument is the field’s name, and the last argument is
26 the field’s type. See the union jvalue entry in jni.h,
27 then capitalize for the proper primitive value. */
28 fid = (*env)->GetStaticFieldID(env, class,
29 STAT_FIELD_NAME, "I");
30 if (fid == 0)
31 return;
32
33 /* Get that field’s data. */
34 staticInt = (*env)->GetStaticIntField(env, class, fid);
35
36 /* Process it, change it... */
37 printf
38 ("In C, doubling original %s value of %d to %d\n",
39 STAT_FIELD_NAME, staticInt, staticInt*2);
40 staticInt *= 2;
41
42 /* ... and store it back into the class object. */
43 (*env)->SetStaticIntField(env, class, fid, staticInt);
44
45
46 /* Now for the nonstatic int, part of the current
47 object. Get the field reference as before... */
48 fid = (*env)->GetFieldID
49 (env, class, INST_FIELD_NAME, "I");
50 if (fid == 0)
51 return;
52
53 /* Get the field. Refer to the object, not the class. */
54 instanceInt = (*env)->GetIntField(env, obj, fid);
55
56 /* Process it, change it... */
57 printf
58 ("In C, tripling original %s value of %d to %d\n",
59 INST_FIELD_NAME, instanceInt, instanceInt*3);
60 instanceInt *= 3;
61

F

F-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

Accessing a Java Primitive as an Object Data Member
(Continued)

62 /* ... and store it back. */
63 (*env)->SetIntField(env, obj, fid, instanceInt);
64
65 /* Return the product of the two. */
66 return (staticInt * instanceInt);
67 }
68

F

Java Native Interface F-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

Accessing Strings

As you might recall, strings in the Java programming language consist
of 16-bit Unicode characters. However, C strings consist of 8-bit
American Standard Code for Information Interchange (ASCII)
characters. Because strings are common objects which are passed
between Java code and native code, several functions have been
defined in jni.h to help make string manipulation easier. The C
datatype for strings in the Java programming language is jstring .

✓ The type unicode is a simple typedef for an unsigned short .

Suppose a native method that prints out a string is declared in a Java
program as follows:

public void nativeHelloWorld3(String printMe);

The following C function implements the native code for it. You must
call ReleaseStringUTFChars to free the memory allocated for the
C string when done.

1 #include <jni.h>
2 #include "NativeHello3.h"
3 #include <stdio.h>
4
5 void Java_NativeHello3_nativeHelloWorld3 (
6 JNIEnv *env, jobject obj, jstring javaString) {
7
8 const char * CString;
9
10 /* Convert java string to C string. */
11 CString = (*env)->GetStringUTFChars(env, javaString, 0);
12
13 printf ("In C, string is %s\n", CString);
14
15 /* Tell VM to release mem for CString as done w/ it. */
16 (*env)->ReleaseStringUTFChars(env, javaString, CString);
17 }

F

F-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

Accessing Strings (Continued)

As a final example, consider accessing strings as object data members.
Suppose a class is defined with a String field and native method as
follows:

1 class NativeHello5 {
2 String stringField = "original";
3 public native String nativeHelloWorld5();
4 static {
5 System.loadLibrary("hello5");
6 }
7 }

This class is instantiated and the native method called from the
following program:

1 class UseNative5 {
2 public static void main (String args[]) {
3 String changedString;
4 NativeHello5 nh = new NativeHello5();
5
6 System.out.println ("In Java, nh’s string says '"
7 + nh.stringField + "'");
8
9 /* Call native method to print and change string in
10 the current object, and return a third string. */
11 changedString = nh.nativeHelloWorld5();
12
13 System.out.println ("In Java, nh’s string says '"
14 + nh.stringField + "'");
15
16 System.out.println ("Native method returned '" +
17 changedString + "'");
18
19 }
20 }

The following native code extracts the string from the object, prints it
out, changes and stores the new version, and then returns another new
string in the function’s return:

1 #include <jni.h>
2 #include "NativeHello5.h"
3 #include <stdio.h>

F

Java Native Interface F-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Passing Information to a Native Method

Accessing Strings (Continued)

4
5 #define NEW_STRING1 "Revised"
6 #define NEW_STRING2 "Revised again"
7
8 jstring Java_NativeHello5_nativeHelloWorld5
9 (JNIEnv *env, jobject obj) {
10
11 jclass class = (*env)->GetObjectClass(env,obj);
12 jfieldID fid;
13 jstring javaString;
14 const char *CString;
15
16 fid = (*env)->GetFieldID
17 (env, class, "stringField", "Ljava/lang/String;");
18 if (fid == 0)
19 return;
20
21 /* Get the field reference for the java string. */
22 javaString = (*env)->GetObjectField(env, obj, fid);
23
24 /* Retrieve the C string from the object. */
25 CString = (*env)->GetStringUTFChars(env, javaString, 0);
26
27 printf ("In C, changing string from %s to %s\n",
28 CString, NEW_STRING1);
29
30 /* Tell VM to release memory for CString as done w/it. */
31 (*env)->ReleaseStringUTFChars(env, javaString, CString);
32
33 /* Alloc a new Java string to store back in the obj. */
34 javaString = (*env)->NewStringUTF(env, NEW_STRING1);
35
36 /* Store it back. */
37 (*env)->SetObjectField(env, obj, fid, javaString);
38
39 /* Allocate one more new Java string to return. */
40 javaString = (*env)->NewStringUTF(env, NEW_STRING2);
41
42 return (javaString);
43 }
44

F

F-14 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Summary

The exact process for integrating native methods is:

1. Create a program containing the native method declarations and
the static code to load the dynamic library:

vi NativeHello.java

2. Create a program containing calls to the native methods:

vi UseNative.java

3. Compile the .java files:

javac NativeHello.java UseNative.java

4. Create the C header file:

javah -jni NativeHello

5. Create the C program implementing your native methods:

vi MyNativeHello.c

6. Compile the dynamic library:

cc -I$JAVA_HOME/include -
I$JAVA_HOME/include/solaris -G MyNativeHello.c -o
libhello.so

7. Set the LD_LIBRARY_PATHvariable:

setenv LD_LIBRARY_PATH .:$LD_LIBRARY_PATH

8. Run the program:

java UseNative

See the JNI tutorial on the JavaSoft Web site for information about
other JNI functionality. You can access the tutorial using a hyperlink
from your locally loaded master Java API index.

G-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

UMLModelingandJava G

What Is UML?

The Unified Modeling Language (UML) is a graphical language for
modeling software systems. It was created in the early 1990’s by three
leaders in the object modeling world: Grady Booch, James Rumbaugh,
and Ivars Jacobson. Their goal was to unify the three major modeling
languages at the time: the Booch method, Object Modeling Technique
(OMT), and Object-Oriented Software Engineering (OOSE, best known
for the introduction of use-case analysis). UML is now a standard of
the Object Management Group (OMG); version 1.1 was adopted by the
OMG on 14 November 1997.

UML is a big language. In this course, we will use a small subset of the
language that includes: package diagrams, class diagrams, object
diagrams, and state diagrams.

G

G-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Package Diagrams

In UML, packages allow you to arrange your modeling elements into
groups. There is not a one-to-one mapping between UML packages
and Java packages. However, it can be used to model Java packages.
Figure G-1 demonstrates a single package that contains a group of
classes in a class diagram.

Figure G-1 A Package Containing a Class Diagram

The mapping to Java packages implies that the classes would contain
the package declaration of package banking . For example, in the file
Customer.java :

package banking;
// import statements
public class Customer {
 // declarations
}

0..*

banking

customers
Customer Account0..*

accounts
Bank

SavingsAccount CheckingAccount

G

UML Modeling and Java G-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Package Diagrams

Figure G-2 demonstrates a simple hierarchy of packages. The shipping
package contains three sub-packages: GUI, reports , and domain . The
dashed arrow from one package to another indicates that the package
at the tail of the arrow "uses" (imports) elements in the package at the
head of the arrow. For example, GUI uses elements in the domain
package.

Figure G-2 A Package Containing Sub-Packages

The mapping to Java packages implies that the classes would contain
the package declaration of package shipping.domain . For example, in
the file Company.java :

package shipping.domain;
// import statements
public class Company {
 // declarations
}

Notice that in Figure G-2, the shipping.GUI and shipping.reports
packages have their names in the body of the package box rather than
in the head of the package box. This is done only when the diagram
does not expose any of the elements in that package.

Vehicle

RiverBargeTruck

Company owns 0..*

shipping

domainGUI

reports

G

G-4 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Class Diagrams

A class diagram gives a visual representation of the members of a class
and the static relationships between classes.

Class Nodes

Figure G-3 shows several class nodes. You do not have to model every
aspect of an entity every time that entity is used. A class node can just
be the name of the class, as in examples a, b, and c. Example (a) is a
concrete class, where no members are modeled. Example (b) is an
abstract class (name is in italics). Example (c) is an interface. Example
(d) is a concrete class, where members are modeled.

Figure G-3 Several "Class" Declarations

Vehicle

-load : double = 0.0

+getLoad() : double

+addBox(weight : double) : boolean

-maxLoad : double

+getMaxLoad() : double

+Vehicle(max_load: double)

Company
Set

<<interface>>
InputStream

a) b) c)

d)

G

UML Modeling and Java G-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Class Diagrams

Class Nodes (Continued)

A full specified class node has three basic elements: the name of the
class in the top, the set of attributes under the first bar, and the set of
methods under the second bar.

Figure G-4 Elements Of a Class Node

An attribute is specified by four elements: access mode, name, data
type, and initial value. A method is specified by three elements: access
mode, name, and signature. The signature is specified by the
parameter list and the return value; if the return value is not specified,
then no value is returned (void). An underline beneath either an
attribute or method specifies that that member has a class scope
(static). Constructors are modeled as a method using the name of the
class for the method name, with class scope and no return value.

Table 7-1 UML Defined Access Modes and Their Symbol

access mode symbol

private -

protected #

public +

Vehicle

-load : double = 0.0

+getLoad() : double

+addBox(weight : double) : boolean

-maxLoad : double

+getMaxLoad() : double

+Vehicle(max_load: double)

attributes

methods

type initial value

signatureclass scope

access modes

G

G-6 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Class Diagrams

Inheritance and Interface Implementation

Figure G-5 shows class inheritance through the "is-a relationship
arrow."

Figure G-5 Class Inheritance Relationship

This is implemented in Java with the extends keyword. For example:

public class SavingsAccount extends Account {
 // declarations here
}

Figure G-6 shows how to model a class implementing an interface,
using the "realization arrow."

Figure G-6 An Example of a Class Implementing an Interface

public class HashSet implements Set {
 // declarations here
}

is-a relation arrow

SavingsAccount

-interestRate : double

+SavingsAccount(balance : double,

CheckingAccount

+CheckingAccount(balance : double,

Account

-balance : double

+getBalance() : double

*withdraw(amt : double) : boolean

*deposit(amt : double)

+Account(init_balance : double)

interest_rate : double) protect : SavingsAccount)

+CheckingAccount(balance : double)

*withdraw(amt : double) : boolean

Map
<<interface>>

HashMap

+put(key : Object, value : Object) : Object
+get(key : Object) : Object

+clear()
+containsKey(key : Object) : boolean
+isEmpty() : boolean
+size() : int

+remove(key : Object) : Object

+keySet() : Set

realization arrow

G

UML Modeling and Java G-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Class Diagrams

Association and Aggregation

Figure G-7 shows several class associations. An association is a link
between two classes that can be "navigated" from one object to
another. For example, a customer has zero or more bank accounts. An
aggregation (also called a composite) is an association in which one
object contains a group of parts (the other objects) where the parts
cannot exist independent of the "whole" object. For example, the
association between Customer and Account is an aggregation because
an account object must exist within the context of a customer and
accounts are not shared between customers.

Figure G-7 Class Associations and Aggregations

An association has a direction indicating the path of navigation. An
association has multiplicity which indicates how many objects on one
side of the relation can be associated with objects on the other side of
the relation. Multiplicity can be any set of non-negative numbers;
including the * symbol, which means any number of elements. The
default multiplicity is 1. A range is specified by n..m , meaning at least
n elements but no more than m elements; therefore, 1..* means any
number of elements, but at least one.

Customer Account0..*
accounts

SavingsAccount CheckingAccount

protectedBy

0..1

association name

aggregation symbol

multiplicity

direction indicator

G

G-8 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Class Diagrams

Association and Aggregation (Continued)

Associations are typically represented in Java as an attribute in the
class at the tail of the relation (specified by the direction indicator). If
the multiplicity is greater than one, then some sort of collection or
array is necessary to hold the elements.

For example, in Figure G-7 the protectedBy association might be
represented in the CheckingAccount class as:

public class CheckingAccount {
 private SavingsAccount protectedBy;
}

Also, in Figure G-7 the accounts aggregation might be represented in
the Customer class as:

public class Customer {
 private Account[] accounts = new Account[MAX_ACCOUNT];
}

or as:

public class Customer {
 private List accounts = new ArrayList();
}

The latter representation is preferable if you do not know the
maximum number of accounts ahead of time.

G

UML Modeling and Java G-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Object Diagrams

An object diagram is used to model a particular example of a set of
objects, their relationships, and their relationships to classes.

In Figure G-8, two objects are shown, c1 and c2 , with their instance
data. They refer to the class node for Count and the arrows indicate
that the object is an instance of the class Count .

Figure G-8 An Example of an Object Diagram

c1 : Count

Count

serialNumber=1

-serialNumber : int

- counter : int = 0

c2 : Count

serialNumber=2

<<instanceOf>><<instanceOf>>

G

G-10 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

State Diagrams

A state diagram is used to model the internal states of an object
throughout its lifetime in response to events. The definition of an
object state is dependent on the object and the level of depth you wish
to model.

Figure G-9 shows an example state diagram. Every state diagram
should have an initial state (the state of the object at its creation) and a
final state. By definition, no state can transition into the initial state
and the final state cannot transition to any other state.

Figure G-9 An Example State Transition Diagram

There is no pre-defined way of implementing a state diagram. This
course has used these diagrams only as a demonstration of the
behavior of existing objects, such as for threads.

Runnable

New Dead

Running
Scheduler run() completes

start()

Blocked

unblocked blocking event

state node

transition

initial state
final state

G

UML Modeling and Java G-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

State Diagrams

Transitions

A transition has five elements:

● Source state – The state affected by the transition

● Event trigger – The event whose reception by the object in the
source state makes the transition eligible to fire, providing its
guard condition is satisfied

● guard condition – A Boolean expression used to determine if the
state transition should be made when the event trigger occurs

● Action – A computation or operation performed on the object
making the state transition

● Target state – The state that is active after the completion of the
transition

Figure G-10 An Example State Transition

action

event trigger

guard conditionRunning

Blocked in
object’s

wait pool

wait()
[must have lock]/
releases lock

source state

target state

G

G-12 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services April 2000, Revision D

Other UML Elements

Stereotypes

The designers of UML understood that they could not build a
modeling language that would satisfy every programming language
and every modeling need. They built several mechanisms into the
UML to allow modelers to design their own semantics to modeling
elements (nodes and relationships). Figure G-11 shows the use of a
stereotype tag <<interface>> to declare that the class node Set is a
Java interface declaration. Stereotype tags can adorn relationships as
well as nodes.

Figure G-11 An Example Stereotype Tag on a Class Node

Diagram Annotation

They also built into the language a method for annotating the
diagrams. Figure G-12 shows a simple annotation.

Figure G-12 An Example Annotation

Set
<<interface>>

stereotype tag

Vehicle3

-load : double

+getLoad() : double

+addBox(weight : double) : boolean

-maxLoad : double

+getMaxLoad() : double

+Vehicle3(max_load: double)

weight in newtons

weight in kilograms

annotation

Index-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services March 2000, Revision D

A
applet

definition 12-3
tag syntax 12-24

Applet Viewer
definition 12-21
synopsis 12-23

ArithmeticException 8-15
ArrayIndexOutofBoundsExcepti

on 8-16
arrays 5-3

B
basic Java application Hello

World 1-8
BorderLayout manager 10-15,

10-24
break statement 4-31
bytecode verifier 1-28

C
CardLayout manager 10-15
comments in Java 3-3
compile-time errors 1-16
complete applet tag syntax 12-24
container layouts 10-14
containers and components 10-6
continue statement 4-31
converting 1.0 event handling to

1.1 B-6

D
directory utilities 9-15
do loop 4-29

E
event conversion table B-7
event handling

before JDK 1.1 B-3
converting 1.0 to 1.1 B-6
in JDK 1.1 B-3
listeners B-10

exceptions 8-4
example 8-5
handling 8-7
importance of 8-6
throwing 8-23

F
file names 9-14
File object 9-14
file tests 9-15
finally statement 8-9
FlowLayout manager 10-15
for loop 4-25

G
getAudioClip() 12-31
GridBagLayout manager 10-15
GridLayout manager 10-15,

10-29

Index

Index-2 Java Programming Language
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services March 2000, Revision D

I
identifiers 3-7, 3-8
if, else statements 4-20
importance of exceptions 8-6
init() 12-9

J
Java language

comments 3-3
compile-time errors 1-16
compiling programs 1-14
identifiers 3-7
keywords 3-9
layout managers 10-15
operators 4-7
running programs 1-15
runtime errors 1-17

Java networking model 16-7
java.awt package overview 10-5

K
keywords 3-9

public 1-10
static 1-10
void 1-10

L
label statement 4-31
layout managers

BorderLayout 10-15
CardLayout 10-15
FlowLayout 10-15
GridBagLayout 10-15
GridLayout 10-15

loop() 12-32
loops

do 4-29, 4-30
for 4-25
while 4-27, 4-28

N
native methods F-1 to F-6, G-1

accessing objects F-8
passing arguments F-7
summary F-14

NegativeArraySizeException
8-16

NullPointerException 8-15

O
operators 4-7

P
panels 10-12

creating 10-37, 10-38
play() 12-29
playing audio clips 12-29
public modifier 1-10

R
random access files 15-26
RandomAccessFile class 15-26
runtime errors 1-17

S
sockets 16-3
start() 12-10
statements

break 4-31
continue 4-31
else 4-20
finally 8-9
if 4-20
label 4-31
switch 4-22
throw 8-23

static modifier 1-10
stop() 12-10, 12-32
switch statement 4-22
System.out.println() 1-13

Index Index-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services March 2000, Revision D

T
TCP/IP client example 16-9
TCP/IP server server

example 16-8
throw statement 8-23
throwing an exception 8-23

U
uniform resource locators

(URLs) 15-24
URL input streams 15-24
URL object 15-24

V
void modifier 1-10

W
while loop 4-27
windows and frames 10-10

Please

Recycle

Copyright 2000 Sun Microsystems Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la
copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune
forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du systèmes Berkeley 4.3 BSD licenciés par l’Université de Californie.
UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, the Sun logo, Solstice, Java, JavaBeans, JavaChip, Java HotSpot, JavaOS, JavaSoft, JDBC, JDK,
JVM, OpenWindows, Write Once, Run Anywhere et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays.

Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Netscape Navigator is a trademark of Netscape Communications Corporation.

UNIX est une marques déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company,
Ltd.

L’interfaces d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour larecherche et le développement du concept
des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive
de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent
en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

L’accord du gouvernement améicain est requis avant l’exportation du produit.

Le système X Window est un produit de X Consortium, Inc.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA
LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE
MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

